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Message passing in Graph

Neural Networks

x
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v =COMBINE
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(k)
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F out = ψ ◦ ((P(A))F ) . Here, P(A) = AW + I and ψ : R −→ R

. In general, P(A) = I + AW1 + A2W2 + ...+ AnWn
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Message passing in Graph Neural Networks

How powerful are graph neural networks?[MBHSL19, XHLJ18]

Theorem
Let G1 and G2 be any two non-isomorphic graphs. If a graph neural network
f : G −→Rd maps G1 and G2 to different embeddings, the Weisfeiler-Leman graph
isomorphism test also decides G1 and G2 are not isomorphic. Converse holds if
COMBINE and AGGREGATE are injective[XHLJ18].
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Weisfeiler-Leman Algorithm[WL68]

Definition

A coloring of a graph G = (V ,E ) is a function c : V −→ N. A (perfect) hashing
is any injective function.

Algorithm Weisfeiler-Leman (WL) or Naive vertex refinement[WL68]

1: Input: (V ,E ,XV ) Here, xv ∈ Zd
2

2: c (v) = c(0) (v)←− hash (xv )
3: while c(t) (v) = c(t+1) (v) ∀v ∈ V do
4: c(t+1) (v)←−hash

(
c(t) (v) , {{c(t) (w) : w ∈ N (v)}}

)
5: Output: c(T ) (v) ∀v ∈ V

Secretly message passing!
But not belief propagation

Abdullah Naeem Malik (TSC) Seminar Series October 25, 2024 4



Weisfeiler-Leman Algorithm[WL68]

Definition

A coloring of a graph G = (V ,E ) is a function c : V −→ N. A (perfect) hashing
is any injective function.

Algorithm Weisfeiler-Leman (WL) or Naive vertex refinement[WL68]

1: Input: (V ,E ,XV ) Here, xv ∈ Zd
2

2: c (v) = c(0) (v)←− hash (xv )
3: while c(t) (v) = c(t+1) (v) ∀v ∈ V do
4: c(t+1) (v)←−hash

(
c(t) (v) , {{c(t) (w) : w ∈ N (v)}}

)
5: Output: c(T ) (v) ∀v ∈ V

Secretly message passing!
But not belief propagation

Abdullah Naeem Malik (TSC) Seminar Series October 25, 2024 4



Weisfeiler-Leman Algorithm[WL68]

Definition

A coloring of a graph G = (V ,E ) is a function c : V −→ N. A (perfect) hashing
is any injective function.

Algorithm Weisfeiler-Leman (WL) or Naive vertex refinement[WL68]

1: Input: (V ,E ,XV ) Here, xv ∈ Zd
2

2: c (v) = c(0) (v)←− hash (xv )
3: while c(t) (v) = c(t+1) (v) ∀v ∈ V do
4: c(t+1) (v)←−hash

(
c(t) (v) , {{c(t) (w) : w ∈ N (v)}}

)
5: Output: c(T ) (v) ∀v ∈ V

Secretly message passing!

But not belief propagation

Abdullah Naeem Malik (TSC) Seminar Series October 25, 2024 4



Weisfeiler-Leman Algorithm[WL68]

Definition

A coloring of a graph G = (V ,E ) is a function c : V −→ N. A (perfect) hashing
is any injective function.

Algorithm Weisfeiler-Leman (WL) or Naive vertex refinement[WL68]

1: Input: (V ,E ,XV ) Here, xv ∈ Zd
2

2: c (v) = c(0) (v)←− hash (xv )
3: while c(t) (v) = c(t+1) (v) ∀v ∈ V do
4: c(t+1) (v)←−hash

(
c(t) (v) , {{c(t) (w) : w ∈ N (v)}}

)
5: Output: c(T ) (v) ∀v ∈ V

Secretly message passing!
But not belief propagation

Abdullah Naeem Malik (TSC) Seminar Series October 25, 2024 4



Message Passing on Simplicial Complexes

classifying trajectories on simplicial meshes, which we represent as edge-flows. Within

this setting, we demonstrate the importance of capturing the cochain complex structure

and being equivariant to changes in orientation in order to learn models that generalise.

3.1 Model overview

Abstractly, a message passing GNN over a graph G is a function f : C0(G,R)F →
C0(G,R)F

′
mapping F scalar functions over the nodes into another set of F′ scalar

functions. In this section, we propose Message Passing Simplicial Networks, which

are functions between cochain complexes f : C•(K,R)F → C•(K,R)F
′

over a simplicial

complex K . Such a model does not only take the 0-forms into account but all the

discrete differential k-forms defined on the complex and the way they are connected

via the coboundary operator δ.

Figure 3.1: Message Passing Simplicial Networks. The figure shows the four types of
message functions for a selection of simplices in the complex.

MPSNs compute neural representations of the cochain complex by passing messages

between the simplices of the complex. The (co)boundary map, which describes the

incidence relations between simplices, determines the structure of the message passing

procedure. As seen in Chapter 2, the two terms of the Hodge Laplacian, given by

∆k = δk−1δ
⋆
k−1 + δ⋆kδk, induce two types of adjacencies between k-simplices. The down

Laplacian considers two k-simplices to be lower adjacent if they have a common face.

Similarly, the sparsity pattern of the up Laplacian specifies when two simplices are

faces of the same simplex. Besides these adjacencies between simplices of the same

dimension given by the composition of δ and its adjoint, the coboundary operator itself

δ and its adjoint ∂ = δ∗ also encode relations between simplices of co-dimension one. In

total, we have four types of topologically-motivated adjacencies between simplices.

This adjacency structure also mirrors the “factorisation” of the cochain vector spaces

provided by the Hodge Decomposition from Theorem 2.25. Boundary and lower adja-

cencies capture the relations between k-cochains and (k−1)-cochains, while coboundary

70

Image from [BFW+21]

Simplicial WL [BFW+21]: c t+1 (σ) =hash of coloring at t of σ and..

coloring of
its upper-neighbors, lower-neighbors, boundaries and coboundaries.

SWL is strictly stronger than 3-WL[BFW+21]
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Directed Cliques
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Implementation
Graph // SSet // Adj Graph
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CinchNET
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To pursue

Can we rigorously prove that message passing polynomial P(A) ≃ higher
order correlations?

▶ P(A) = AW might help approximate covariance matrix

Do higher order WL tests give us a variant of junction tree algorithm that
does not eliminate cycles?

▶ Edges, seen as boundaries of 2-simplices, can have their marginal probabilities
determined.
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Jin-Yi Cai, Martin Fürer, and Neil Immerman, An optimal lower bound on the
number of variables for graph identification, Combinatorica 12 (1992), no. 4,
389–410.

Ningyuan Teresa Huang and Soledad Villar, A short tutorial on the
weisfeiler-lehman test and its variants, ICASSP 2021-2021 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE,
2021, pp. 8533–8537.

Will Hamilton, Zhitao Ying, and Jure Leskovec, Inductive representation
learning on large graphs, Advances in neural information processing systems
30 (2017).

Abdullah Naeem Malik (TSC) Seminar Series October 25, 2024 10



References II

Thomas N Kipf and Max Welling, Semi-supervised classification with graph
convolutional networks, IEEE Transactions on Neural Networks 20 (2008),
no. 1, 61–80.

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman,
Provably powerful graph networks, Advances in neural information processing
systems 32 (2019).

Martin Mladenov Pascal Schweitzer Martin Grohe, Kristian Kersting, Color
refinement and its applications, An Introduction to Lifted Probabilistic
Inference (Sriraam Natarajan Davide Poole Guy Van den Broeck,
Kristian Kersting, ed.), MIT Press, 2021.

Boris Weisfeiler and Andrei Leman, The reduction of a graph to canonical
form and the algebra which appears therein, nti, Series 2 (1968), no. 9,
12–16.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka, How powerful
are graph neural networks?, arXiv preprint arXiv:1810.00826 (2018).

Abdullah Naeem Malik (TSC) Seminar Series October 25, 2024 11



Thank you!
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Weisfeiler-Leman Algorithm Example

Source:
https://davidbieber.com/post/2019-05-10-weisfeiler-lehman-isomorphism-test/
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Examples of Message Passing

AGGREGATE COMBINE Ref

MAX
({
σ
(
W1.x

(k)
u

)}
, u ∈ N (v)

)
W2.

[
x
(k)
v , a

(k+1)
v

]
GraphSAGE[HYL17]

W1.MEAN
(
x
(k)
u , u ∈ N (v) ∪ {v}

)
σ
({

W2.a
(k+1)
v

})
GCN[KW08]
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k-Weisfeiler-Leman Algorithm

Algorithm k-Weisfeiler-Leman (k-WL)

1: Input: (V ,E ,XV ) Here, xv ∈ Zd
2

2: c
(−→v ) = c(0)

(−→v )←− hash (x−→v )

3: while c(t)
(−→v ) = c(t+1)

(−→v )∀−→v ∈ V k do

4: c
(t+1)
i

(−→v )←− {{c(t) (−→w ) : w ∈ Ni

(−→v )}} ∀−→v ∈ V k

5: c(t+1)
(−→v )←− hash

(
c(t)

(−→v ) , c(t+1)
1

(−→v ) , ..., c(t+1)
k

(−→v )) ∀−→v ∈ V k

6: Output: c(T )
(−→v ) ∀−→v ∈ V k

where hash(x−→v ) = hash(x−→w ) iff (a) xvi = xwi and (b) (vi , vj) ∈ E iff (wi ,wj) ∈ E .
N.B.: Ni

(−→v ) = {(v1, ..., vi−1, u, vi+1, ..., vk) : u ∈ V }.
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Weisfeiler-Leman Hierarchies

If two graphs have different colorings, then the graphs are not isomorphic. Test is
inconclusive if coloring of graphs is the same[MBHSL19]

WL Test fails to distinguish the following graphs, whereas 5-WL does not:

v1

v2

v3

v4

v5

v1

v2

v3

v4

k-WL is strictly weaker than (k + 1)-WL[HV21]

However.. for every k, there is an infinite family of graphs for which the k-WL
test fails[CFI92]
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Simplicial Set Weisfeiler-Leman Algorithm
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Directed WL Test

Algorithm Directed Weisfeiler-Leman (DWL)[MG21]

1: Input: (V ,E ,XV ) Here, xv ∈ Zd
2

2: c (v) = c(0) (v)←− hash (xv )
3: while c(t) (v) = c(t+1) (v) ∀v ∈ V do

4: c(t+1) (v)←−hash
(

c(t) (v) , {{c(t) (w) : w ∈ Nin (v)}},
{{c(t) (u) : w ∈ Nout (u)}}

)
5: Output: c(T ) (v) ∀v ∈ V

DWL is strictly stronger than WL[BFW+21]
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Summary of WL Zoo

Simplicial Set WL: c t+1 (σ) =hash of coloring at t of σ and coloring of its i-th
boundaries, i-th coboundaries, i-th upper-neighbors and i-th lower-neighbors for
0 ≤ i ≤ k whenever σ ∈ Xk

Summary:

DWL ⊏ WL

⊔

⊔

?

k-WL

⊔

⊔

SSWL ⊏

SWL
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