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Main points that may be useful to projects you are working on:
part I

Portfolio construction with quadratic optimization, conceived
and developed by Harry Markowitz, has been central to financial
services for decades and shows no sign of going away. On the
contrary, its applications seem to be growing.

The large universe of securities used to construct portfolios and
the non-stationarity of markets mean that statistics 101
techniques cannot be used to create usable inputs to quadratic
optimization.

Factor models provide the dimension reduction required to create
the inputs. Fortunately for us, they give empirically sound
descriptions of returns to public equities.
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Main points that may be useful to projects you are working on:
part II

Random matrix theory improves statistics 101 estimates of factor
models.

It is crucial to choose improvement metrics that align with
project goals.

The interaction between factors and constraints is an essential
consideration. It is far from enough to consider global minimum
variance portfolios.

JSE, a newcomer to random matrix theory, shows promise at
meaningful improvement to quadratic optimization on the basis of
theory and simulation. JSE also may have applications to training
neural networks.

We need empirical studies. 2



The efficient frontier



In 1952, Harry Markowitz framed investment as a tradeoff be-
tween expected return and variance
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Markowitz did not originally draw the efficient frontier the way
we do today

Historical note: Markowitz’s initial focus was long-only portfolios, as long/short investing may impossible or at least
very hard in the 1950s. Even today, long-only constraints are widely used by many investors. Seminar 217 work
long-only constraints we are doing may be of practical use.
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Portfolio optimization in practice typically includes large uni-
verses of securities and vast numbers of constraints, many of
which are not convex

An efficient portfolio is a solution to a quadratic optimization with
linear constraints. More generally, consider a p × k matrix of
constraint gradients C and k-vector of constraint targets a:

min
w∈Rp

w⊤Σw

w⊤C = a

Typical efficient portfolio:

C =


1 µ1
...

...
1 µp

 a =
(

1
µ

)
The problem: Σ is
unknown so we use an
estimate, yielding an
optimized portfolio that is
not optimal. 5



Estimating Σ for use in
optimization: part I



Evidently realizing that classical statistics would not provide
what he needed, Markowitz considered alternative ways to es-
timate optimization inputs

The calculation of efficient surfaces might possibly be of
practical use. Perhaps there are ways, by combining sta-
tistical techniques and the judgment of experts, to form
reasonable probability beliefs (µ, Σ).

Factor models are standard tools for creating estimates of Σ when
the number of returns p is large relative to the number of
observations n.
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An estimated covariance matrix is used to construct an opti-
mized portfolio, which can be far from optimal

In 1989 Richard Michaud famously wrote that MV optimizers are
in a fundamental sense, “estimation error maximizers.”

Optimization selectively amplifies errors in an estimated covariance
matrix.

The problem can be severe when the number of securities p
exceeds the number of observations n, which is frequently the case.
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Factor models reduce estimation error by reducing dimension

A large number of
variables are, in many
situations, driven by a
relatively small number of
factors.

1904: Charles Spearman’s
two-factor theory of
intelligence
1963: Bill Sharpe’s
one-factor market model
1974: Barr Rosenberg’s
Barra models
1976: Stephen Ross’s
arbitrage pricing theory

An overview of three factor model architectures commonly used in finance is in Connor (1995). He calls them
fundamental (favored by practitioners), macroeconomic (used by finance academics) and statistical (typically
chosen by science and statistics academics). There are pros and cons for all three. We’ll focus on the third.
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Today, we’ll assume returns to p securities follow a one-factor
model

The structural model is given by:

r = βf + ϵ

Then:

Σ = σ2ββ⊤ + δ2I = η2bb⊤ + δ2I

We need to estimate two positive scalars, η2 and δ2, and a unit
p-vector b.

Only r is observed. r ∈ Rp, f ∈ R and ϵ ∈ Rp are random (but not necessarily Gaussian) and β ∈ Rp is an
unknown parameter. σ2 = var(f), δ2 = var(ϵ), η2 = σ2|β|2 and corr(f, ϵ) = 0. 9



A sample covariance matrix synthesizes information from data
but cannot be used in high-dimensional optimization

S = ( σij )

σij = σiσjρij

Volatility

Correlation
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Spectral decomposition, or principal component analysis
(PCA), of the sample covariance matrix provides spare parts
for constructing estimates of Σ

S = ( σij )

σij

=

σiσjρij=

λ2 hh⊤ +
Leading eigenvalue
 Leading 


 eigenvector


…

Volatility

Correlation
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The Bianchi Experiment



The Bianchi experiment

In simulation:

Replace the estimated eigenvalue with the truth, leaving the
corrupted eigenvector in place

Switch the roles of eigenvalue and eigenvector in the previous
step

Data are generated from a one factor model, r = βf + ϵ. Factor returns f are drawn independently from
N(0, 0.162) and specific returns are drawn independently from N(0, 0.50). While values of β are parameters to
be estimated, they are drawn from N(1, 0.5). Boxplot generated with 200 simulated paths. Analysis and graphics
by Rahul Vinoth.
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We borrow metrics from financial practitioners to quantify er-
rors in optimized portfolios and their risk forecasts

Tracking error of an
optimized portfolio w∗

measures its distance from
the optimal portfolio w∗:

T E2 = (w − w∗)⊤Σ(w − w∗)

Variance forecast ratio is
estimated variance as a
fraction of the truth:

V = w⊤Σestw
w⊤Σw

Ideally, tracking error is 0 and the variance forecast ratio is 1.

These metrics are great for simulation where we know ground truth. What metrics should we use in an empirical
study, where we don’t have access to the covariance matrix or the optimal portfolio? There is disagreement among
experts.
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It seems that errors in eigenvectors rather than errors in eigen-
values that lower variance forecast ratio

V = w⊤Σestw
w⊤Σw

14



As we improve variance forecast ratio by correcting eigenvec-
tors, we also move the optimized portfolio closer to the opti-
mum

Tracking error, the
workhorse of financial
services, is the distance
between two portfolios

TE2 = (w∗−w)⊤Σ(w∗−w)

Data are generated from a one factor model, r = βf + ϵ. Factor returns f are drawn independently from
N(0, 0.162) and specific returns are drawn independently from N(0, 0.502). While values of β are parameters
to be estimated, they are drawn from N(1, 0.5). Analysis and graphics by Rahul Vinoth.
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Estimating Σ for use in
optimization: part II



The leading sample eigenvector and the difference between the
leading sample eigenvalue and the average of its lesser, nonzero
counterparts play crucial roles

S = ( σij )

σij

=

σiσjρij=

λ2 hh⊤ +
Leading eigenvalue
 Leading 


 eigenvector


…

Volatility

Correlation


ℓ2 = Tr(S) − λ2

n − 1
Average non-zero

lesser eigenvalue
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A family of one-factor estimates of Σ

For a unit p vector , set:

Σv = (λ2 − ℓ2)vv⊤ + n

p
ℓ2I,

The estimate Σv varies with the unit vector v.

Since limp→∞(λ2 − ℓ2)/p = limp→∞ η2/p is finite and limp→∞ nℓ2/p = δ2, we keep the estimates of
η2 and δ2 fixed. For any v, Trace(Σv) = Trace(S) is an unbiased estimate of Trace(Σ).
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PCA and JSE estimates of Σ



PCA estimate of Σ

Setting v to the leading sample eigenvector h = hPCA yields

ΣPCA = (λ2 − ℓ2)hPCAhPCA⊤ + n

p
ℓ2I

This is the S-POET estimate of Weichen Wang and Jianqing Fan.

Knowing they were poor, researchers and analysts used PCA
estimates of eigenvectors in high dimensions because they didn’t
have a better idea.

The fact that we keep the sample eigenvectors does not
mean that we assume they are close to the population
eigenvectors. It only means that we do not know how to
improve upon them.

–Olivier Ledoit and Michael Wolf
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James Stein shrinkage transforms hPCA to hJSE, a better esti-
mate of b

hC = proj
C

(h), c
JSE =

ℓ2/λ2

1 − |hC |2
, h

JSE ∝ (1 − c
JSE)h + c

JSE
hC

C = k − dimensional subpace ofR
p

, ∠(b, C) < π/2

source: Goldberg & Kercheval (2023), drawing by Alex Shkolnik
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JSE estimate of Σ

Setting v to the leading sample eigenvector hJSE yields

ΣJSE = (λ2 − ℓ2)hJSEhJSE⊤ + n

p
ℓ2I

As we discuss next, JSE shrinkage leads to two types of stochastic
dominance.
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Asymptotic stochastic dominance of
hJSE over hPCA



The magic formula

Assume, as p → ∞, |βi| is bounded, |β|2/p has a positive limit,
and ∠(β, C) has a positive limit Θ < π/2. Then,

lim
p→∞

|hJSE − b| < lim
p→∞

|hPCA − b| almost surely

Asymptotically, the improvement of JSE over PCA is:

cos2(∠(hJSE, b)) − cos2(∠(hPCA, b)) = 1
1 + ϕ2

∞

(
cos2 Θ

ϕ2
∞ sin2 Θ + 1

)
> 0.

ϕ2
∞ is a relative eigengap equal to limp→∞

λ2−ℓ2

ℓ2 .
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How well does the magic formula work for finite p?
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Box plots are generated from 10000 simulations of n = 24 monthly observations of returns to p = 3000
securities. See Appendix for calibration details. Note the difference in scale for small, medium and large angles.
Graphics by Stephanie Ribet.
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Asymptotic stochastic dominance of
wJSE over wPCA



Construct estimates wPCA and wJSE of efficient portfolios by
solving a quadratic program

min
w∈Rp

w⊤Σw

w⊤C = a

with Σ = ΣPCA and
Σ = ΣJSE

C =


1 µ1

1 µ2
...

...
1 µp

 a =
(

1
µ

)
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For large p, the true variance of a portfolio optimized with Σv

is approximately equal to the optimization bias

For a unit p-vector v the optimization bias Ep(v, C, a) determines
the variance V(wv) of a portfolio optimized with Σv almost surely.

V(wv) = KE2
p (v, C, a) + O(1/p)

Set v = hPCA and v = hJSE for applications.

Ep(v, C, a) =
⟨b, wv

C ⟩(1 − ||vC ||2) − ⟨b, v − vC ⟩⟨v, wv
C ⟩

||wv
C

||(1 − ||vC ||2)
, V(w

v) = η
2||(C

†)⊤
a||2E2

p(v, C, a)+O(1/p)

C† is the Penrose inverse of C.
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Variances of optimized and optimal portfolios
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Box plots are generated from 10000 simulations of n = 24 monthly observations of returns to p = 3000
securities. See Appendix for calibration details. Graphics by Stephanie Ribet.
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For any angle Θ, wJSE stochastically dominates wPCA

Almost surely,

lim
p→∞

V(wJSE)
V(wPCA) = 0

The result requires that limp→∞ ∠
(

a, C†b
)

exists and is non-zero.
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Why this works



Our results benefit from the blessing of dimensionality, present
in the HL regime of new random matrix theory
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In the HL regime, concentration of measure arguments imply
that the sample leading eigenvector h is overwhelming likely to
be further away from an anchor point z than the population
leading eigenvector b

source: Goldberg, Papanicalaou & Shkolnik (2022)
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Appendix: calibration for the numerical experiment

• factor and specific volatilities are 16% and 60%
• β is deterministic in our model, but it is generated with a

normal, mean 1 distribution, The variance is set so that β has
a prescribed angle with the unique, positive dispersionless
vector on the sphere. We normalize so that |β|2/3000 = 1

• µ is deterministic in our model, but is generated by adding
noise from a normal distribution with mean 0.5 and variance 2
to β

• C is the span of the unique, positive dispersionless vector and
µ

• for small, medium and large angles, cos Θ = 0.99, 0.75, 0.49.
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