PSTAT 262MC. Monte Carlo Methods

Lecture 2. Concentration of measure, Stein's paradox, the isoperimatric problem, and the Johnstone-Lindenstrauss lemma.

Alex Shkolnik shkolnik@ucsb.edu

January 17, 2025.

Department of Statistics & Applied Probability University of California, Santa Barbara Warm up

Problem on the hypercube $[-2, 2]^d$ (taken from Steele (2004)).

On Geometry and Sums of Squares

52

In \mathbb{R}^2 , one places a unit circle in each quadrant of the square $[-2, 2]^2$.

A non-overlapping circle of maximal radius is then centered at the origin.

Problem 4.1 (Thinking Outside the Box)

Is the central sphere S(d) contained in the cube $[-2,2]^d$ for all $d \ge 2$?

Compute the radius of the central sphere for any $d \ge 2$.

The radius of the inner sphere is compute via,

$$\frac{\sqrt{d\,2^2}}{2} - 1 = \sqrt{d} - 1$$

so that the sphere exists the box for dimensions d > 9.

The fraction of the volume the central sphere occupies in the cube $[-2, 2]^d$ tends to zero exponentially in *d* (Steele 2004).

High dimensional space oddity

(https://arxiv.org/abs/2409.13046).

- What is the fraction of light emanating from the origin that leaves the cube (none for d = 2)?
- "We could not answer this question using geometry. ... Our solution is probabilistic in nature."

Collection of lectures on convex geometry (Ball 1997).

An Elementary Introduction to Modern Convex Geometry

KEITH BALL

Contents

Preface	1
Lecture 1. Basic Notions	2
Lecture 2. Spherical Sections of the Cube	8
Lecture 3. Fritz John's Theorem	13
Lecture 4. Volume Ratios and Spherical Sections of the Octahedron	19
Lecture 5. The Brunn–Minkowski Inequality and Its Extensions	25
Lecture 6. Convolutions and Volume Ratios: The Reverse Isoperimetric	
Problem	32
Lecture 7. The Central Limit Theorem and Large Deviation Inequalities	37
Lecture 8. Concentration of Measure in Geometry	41
Lecture 9. Dvoretzky's Theorem	47
Acknowledgements	53
References	53
Index	55

NOTATION.

d denotes the dimension.

For $u = (u_1, ..., u_m) \in \mathbb{R}^m$ and $v = (v_1, ..., v_m) \in \mathbb{R}^m$ we let $\langle x, y \rangle = \sum_{i=1}^n x_i y_i$ denote the standard inner product. $|x| = \sqrt{\langle x, x \rangle}$, the Eucledian length. Geometric LLN and Stein's paradox

INADMISSIBILITY OF THE USUAL ESTI-MATOR FOR THE MEAN OF A MULTI-VARIATE NORMAL DISTRIBUTION

CHARLES STEIN STANFORD UNIVERSITY

1. Introduction

If one observes the real random variables X_1, \dots, X_n independently normally distributed with unknown means ξ_1, \dots, ξ_n and variance 1, it is customary to estimate ξ_i .

- Stein (1955),

Let $X = \xi + \epsilon$ be a noisy observation of vector $\xi \in \mathbb{R}^d$.

- This is the classical setting of observing $X \sim N(\xi, I_d)$ to estimate the population mean ξ (in the above image n = d).
- X is the maximum likelyhood estimator of the unknown ξ .
- Stein's paradox concerns the existence of $X' \in \mathbb{R}^d$ such that

$$|\mathbf{E}|X' - \xi| < \mathbf{E}|X - \xi|$$

This is possible for $d \ge 3$ (dimension n is above image) (https://en.wikipedia.org/wiki/Stein'sexample) Example from Stigler's 1988 Neyman Memorial Lecture.

Let X be the price of apples in Washington.

$$X = \frac{1}{n} \sum_{i=1}^{n} X_i \in \mathbb{R}$$

Let *Y* be the price of oranges in Florida.

$$\begin{pmatrix} X \\ Y \end{pmatrix} = \frac{1}{n} \sum_{i=1}^{n} \begin{pmatrix} X_i \\ Y_i \end{pmatrix} \in \mathbb{R}^2$$

Finally, let Z be the price of wine in France.

$$Q = \begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \frac{1}{n} \sum_{i=1}^{n} \begin{pmatrix} X \\ Y \\ Z \end{pmatrix} \in \mathbb{R}^{3}$$

There is an estimator better than Q (in mean-squared error).

We begin with $X = \xi + \epsilon$ but instead of assuming that the noise $\epsilon \sim N(0, I_d)$ we use geometrical arguments.

Pictured are $X, \xi \in \mathbb{R}^d$ and $\epsilon = X - \xi$ (the noise vector).

The $\xi \in \mathbb{R}^d$ is unknown (we only see the observation X).

To make things easier assume the length $|\epsilon|$ is known. But even when given $|\epsilon|$ it is not clear how to improve the estimate *X*.

– The unknown ξ could be on any point on the circle pictured.

Add any point $m \in \mathbb{R}^d$. We now have the vectors $\epsilon = \eta - \beta$ and $w = m - \xi$ with α_d denoting the angle between them.

The vector $m \in \mathbb{R}^p$ is treated as nonrandom (or independent).

- For a low dimension d we cannot say more, but ...

As the dimension *d* becomes large, the angle α_d tends to 90° with high probability (given mild assumptions on the noise).

GEOMETRIC LLN.

$$\langle X - \xi, m - \xi \rangle / d = \langle \epsilon, w \rangle / d = \frac{1}{d} \sum_{i=1}^{d} w_i \epsilon_i \to 0$$

As $d \uparrow \infty$ the angle α_p between ϵ and $w = m - \xi$ tends to 90°.

- The convergence above may be viewed as a law of large number for non-identical random variables.
 (e.g., https://arxiv.org/pdf/1701.02234)
- Noise (pure randomness) is orthogonal to (or independent of) any high dimensional vector not corrupted by it.
- Very similar to the concentration of measure result due to Borel 1914 (mass of hypercube concentrates on equator).

Borel 1914 - Concentration of mass of hypercube on its equator.

A point *u* is on the equator of the hypercube $[0, 1]^d$ whenever,

$$\langle u - v, v \rangle = 0$$

where $v = (\frac{1}{2}, \dots, \frac{1}{2})$ is the center of the hypercube.

Define X^{JS} as the closest point to ξ on the line segment between X and m (this is the James-Stein estimator).

- See James & Stein (1961) for $m = 0_d$ and finite d > 2.
- We took $X^{\text{JS}} = X + c(X m)$ for any $m \in \mathbb{R}^d$.
- We will be able to estimate $c \in [0, 1]$ in the limit $d \uparrow \infty$.

Once we reach dimension ∞ the geometry above may be computed via the Pythagorean theorem (i.e. $\alpha_{\infty} = 90^{\circ}$).

– Each length pictured is scaled by $|\epsilon|$ (the only left unknown).

Letting ν be a *d*-consistent estimate¹ of $|\epsilon| = |X - \xi|$, let

$$X^{\text{JS}} = m + c(X - m), \qquad \left(c = 1 - \frac{\nu^2}{|X - m|^2}\right)$$

Theorem. If both $|\xi|^2/p$ and $|\epsilon|^2/p$ are bounded in $(0, \infty)$ as the dimension $d \uparrow \infty$ and the Geometric LLN holds,

$$|X^{\rm JS} - \xi| \sim \sqrt{c} |X - \xi|.$$

with \sqrt{c} is eventually in the interval (0, 1).

- We write $a_d \sim b_d$ provided $\lim_{d \uparrow \infty} a_d / b_d = 1$.
- For large dimension X^{JS} is clearly preferred to X and this works for any choice of m (hence Stein's paradox).

¹For this we require two observations of ξ and putting them in a $d \times 2$ matrix M it may be shown that ν^2 defined as the second eigenvalue of $M^{\top}M$ satisfies $\nu \sim |\epsilon|$ as $d \uparrow \infty$.

PROOF SKETCH.

- Start with X(c) = m + c(X - m) and minimize the error function $c \mapsto |X(c) - \xi|^2$ to obtain the minimizer,

$$c^* = \frac{\langle X - m, \xi - m \rangle}{|X - m|^2} = 1 - \frac{\langle X - m, \epsilon \rangle}{|X - m|^2}$$

- Show that $|c c^*|$ with c as stated in the theorem vanishes as d tends to infinity assuming the geometric LLN.
- Deduce that $\langle \xi X(c^*), m X(c^*) \rangle = 0$ which establishes the right angle at X^{JS} in the limit as shown in the figure.
- Using that $v \sim |\epsilon|$ compute all the lenghts between the points $(X, \xi, m, X^{\text{JS}})$ in the infinite dimensional limit.

AN APPLICATION. We saw the goal of Monte Carlo integration is to estimate integrals such as $\int_{\mathcal{D}} f(x) dx$ for some domain \mathcal{D} .

Let $\theta \in \mathbb{R}^d$ be some high dimensional set of parameters, and

$$F(\theta) = \int_{\mathcal{D}} f(x, \theta) \mathrm{d}x$$

In many application we wish to estimate the gradient of F,

$$\nabla_{\theta} F(\theta) = \left(\frac{\mathrm{d}F(\theta)}{\mathrm{d}\theta_1}, \dots, \frac{\mathrm{d}F(\theta)}{\mathrm{d}\theta_d}\right) \in \mathbb{R}^d$$

Mohamed et al. (2020) apply Monte Carlo integration (given $\nabla_{\theta} f(x, \theta)$ may be computed) to estimate $\nabla_{\theta} F(\theta)$.

- The discuss many applications to inference, reinforcement learning, queuing theory, sensitivity analysis, etc.

Taking $X = \nabla_{\theta} F(\theta) + \epsilon$ we could use X^{JS} to possibly improve upon Monte Carlo estimates when d is large.

Related is also the area of "derivative free optimization" which does not assume $\nabla_{\theta} f(x, \theta)$ is known (see Scheinberg (2022)).

The estimator X is called inadmissible because, for large enough d, the James-Stein estimator X^{JS} improves upon it.

The vector *m* is called the "shrinkage target".

The James-Stein estimator has inspired the area of shrinkage estimation in statistics (Fourdrinier et al. 2018).

Isoperimetric problem

Let (X, d) be a metric space.

-
$$d(x, y)$$
 is the distance between $x, y \in \mathbb{X}$.
- $d(x, A) = \inf_{y \in A} d(x, y)$.

Consider the ϵ -neighborhood of A, i.e. for $\epsilon > 0$,

$$A_{\epsilon} = \{ x \in \mathbb{X} : d(x, A) \le \epsilon \}$$

For fixed $\epsilon > 0$, we define the function ϕ_v as follows.

$$\phi_v(\epsilon) = \inf_{A \subseteq \mathbb{X}} \{ \mu(A_\epsilon) : \mu(A) \ge v \}$$

Isoperimetric problem. "Of all shapes A with volume V, what is the one that minimizes the volume of the ϵ -neighborhood of A."

- Few explicit solutions are known (e.g., most notably the constant curvature spaces; see Section 2.1 of Ledoux (2001)).
- Lower bounds for the function ϕ_v are good enough (see concentration of measure below).

Geometric/functional analysis perspective (with mix of probability where it is helpful) – Ledoux (2001).

The isoperimetric problem on \mathbb{R}^d

Let μ measure volume in \mathbb{R}^d uniformly, e.g., the μ -measure of a box $[a_1, b_1] \times \cdots \times [a_d, b_d] \subseteq \mathbb{R}^d$ is given by,

$$\mu([a_1,b_1]\times\cdots\times[a_d,b_d])=\prod_{i=1}^d(b_i-a_i).$$

Let d be the Euclidean metric (e.g., d(x, y) = |x - y|). Consider all $A \subseteq \mathbb{R}^d$ of fixed volume $v = \mu(A)$.

The body *A* that minimizes $\mu(A_{\epsilon})$ is the Euclidean ball *B*, i.e.,

$$B = B(x, r) = \{ v \in \mathbb{R}^d \, | \, \mathrm{d}(x, v) \le r \}$$

where the radius of the ball *r* is set to achieve $\mu(B) = v$. The center *x* of *B* does not change the volume *v*.

Then, $\phi_v(\epsilon) = \mu(B_\epsilon)$ and $B_\epsilon = B(x, r + \epsilon)$ is also a ball just like B = B(x, r) but with the larger radius $r + \epsilon$.

This is a corollary of Brunn-Minkowski inequality (see Theorem 5.2 and Lecture 8 in Ball (1997)).

Illustration of the isoperimetric problem in \mathbb{R}^d .

The box, the ball and the star *A* all have volume $v = \mu(A)$. Their ϵ -neighborhoods are pictured with a dashed boundary.

Out of the three *A* (and every set of volume *v*) the ball A = B (middle) minimizes the volume of its ϵ -neighborhood $\mu(A_{\epsilon})$

The ball *B* also minimizes the surface area of any body $A \subseteq \mathbb{R}^d$ provided that $\mu(A) = \mu(B)$ (Theorem 5.3 in Ball (1997).

The isoperimetric inequality on \mathbb{R}^d

Let $B = \{y \in \mathbb{R}^d : d(x, y) \le r\}$ be a Euclidean ball of radius r centered at x. Let $\mu(B) = v$ be its volume (unchanged by x).

We have the following isoperimetric inequality on \mathbb{R}^d . For all measurable $A \subseteq \mathbb{R}^d$ of volume $v = \mu(A) = \mu(B)$ and $\epsilon > 0$,

$$\mu(A_{\epsilon}) \ge \mu(B_{\epsilon}) = \phi_{v}(\epsilon).$$

This says that "growing" a body *A* to its ϵ -neighborhood takes up the least volume for A = B, the Euclidean ball.

The advantage is that $\mu(B_{\epsilon})$ is much easier to calculate than would $\mu(A_{\epsilon})$ be for many useful *A* encountered in applications.

We can apply this result to see where the uniform measure μ concentrates inside the hypercube $[0, 1]^d \subseteq \mathbb{R}^d$.

Let $A \subseteq [0, 1]^d$ with $\mu(A) \ge 1/2$ (i.e., A is a body in the hypercube occupying at least half its volume; $\mu([0, 1]^d) = 1$).

Let v(r) denote the volume $\mu(B)$ of a ball B of radius r > 0. Fix a ball B to have volume $v(r_d) = 1/2$. It's radius has $r_d \sim \sqrt{d}$ (i.e., $\frac{r_d}{\sqrt{d}} \rightarrow 1$).² By the isoperimetric inequality,

$$\mu(A_{\epsilon}) \ge \mu(B_{\epsilon}) = v(r_d + \epsilon)$$

Some further calculations yield $v(r_d + \epsilon) \ge 1 - e^{-\pi\epsilon^2}$.

- For any A in $[0, 1]^d$ of more than half the volume of $[0, 1]^d$, the ϵ -neighborhood volume grows exponentially in ϵ^2 .

The largest distance between any two corner of the hypercube is \sqrt{d} , so provided that $A_{\delta\sqrt{d}} \subseteq [0, 1]^d$ for some $\delta > 0$,

$$\mu(A^c_{\delta\sqrt{d}}) \le e^{-\pi\delta^2 d}$$

which tends to zero exponentially fast in the dimension.

²see (www.wikipedia.org/wiki/Volume_of_an_n-ball)

Another classical domain is $\mathbb{S}^{d-1} = \{x \in \mathbb{R}^d : |x| = 1\}$, the surface of a sphere of radius 1 in *d*-dimensions.

Let μ be the uniform area measure on \mathbb{S}^{d-1} with $\mu(\mathbb{S}^{d-1}) = 1$.

- This means the $\mu(A) = \mu(RA)$ where RA is any rotation of $A \subseteq \mathbb{S}^{d-1}$ (www.wikipedia.org/wiki/Rotation_matrix).
- Statistically, a vector $u \in \mathbb{S}^{d-1}$ from the distribution μ will be "equally likely to be at any point in \mathbb{R}^{d-1} ".³

We can let d be the Euclidean metric or geodesic distance.

Either metric may be used to define spherical cap,

$$C = C(z, r) = \{ v \in \mathbb{S}^{d-1} : \mathrm{d}(z, v) \le r \},\$$

i.e., all points within distance/angle r *of the cap center* $z \in \mathbb{S}^{d-1}$ *.*

³Of course this event has measure zero.

C(z, r) is in fact a ball on \mathbb{S}^{d-1} centered at *z* and with radius *r*.

- The cap C(z, r) contains all area above the dashed line.
- The illustrated cap C(z, r) uses angle r_1 with the geodesic metric and r_2 with the Euclidean metric (set to match area).
- $-r_1 \neq r_2$ when describing the same cap with different metrics.
- Above $u \in \partial C(z, r)$, the boundary of the cap (at maximal angle r_1), and $v \in C(z, r)$ at some angle smaller than r_1 .

The isoperimetric problem on \mathbb{S}^{d-1} .

Let μ be the uniform surface area measure on \mathbb{S}^{d-1} . Let d be the Euclidean metric or geodesic distance. Consider all $A \subseteq \mathbb{R}^d$ of fixed area $a = \mu(A)$.

The body A that minimizes $\mu(A_{\epsilon})$ is the spherical cap C, i.e.,

$$C = C(z, r) = \{ v \in \mathbb{S}^{d-1} : d(z, v) \ge r \}$$

where the radius *r* of the cap is set to achieve area $\mu(C) = a$. The center *z* of *C* does not change the area *a*.

Then, $\phi_v(\epsilon) = \mu(C_{\epsilon})$ and $C_{\epsilon} = C(z, r + \epsilon)$ is also a cap just like C = B(z, r) but with the larger radius $r + \epsilon$.

The proof is difficult to find/read (Chapter IV of Part 3 of Lévy & Pellegrino (1951) credited to Lévy and dating to 1919).

- A self-contained proof is in Section 8 of Figiel et al. (1977).
- Gromov (1980) generalizes to Riemannian manifolds (exact answers known only for constant curvature).

The isoperimetric inequality on \mathbb{S}^{d-1}

Let $C = \{v \in \mathbb{S}^{d-1} : d(z, v) \le r\}$ be a Euclidean ball of radius r centered at z. Let $\mu(C) = a$ be its area (unchanged by z).

We have the following isoperimetric inequality on \mathbb{S}^{d-1} . For all measurable $A \subseteq \mathbb{S}^{d-1}$ with $a = \mu(A) = \mu(C)$ and $\epsilon > 0$,

$$\mu(A_{\epsilon}) \ge \mu(C_{\epsilon}) = \phi_a(\epsilon).$$

This says that "growing" an area A to its ϵ -neighborhood takes up the least the area of A = C, the spherical cap.

The advantage is that $\mu(C_{\epsilon})$ is much easier to calculate than would $\mu(A_{\epsilon})$ be for many useful A encountered in applications. For calculations of areas of spherical caps of \mathbb{S}^{d-1} see Li (2010). Bounds are derived in Lecture 2 of Ball (1997). These give the famous concentration on the equation result (next slide). Consider any area A on \mathbb{S}^{-1} with measure $\mu(A) \ge 1/2$ (i.e., A occupies at least half the sphere).

The spherical cap *C* with area $\mu(C) = 1/2$ extends to the "equator" of the sphere, i.e. $C = C(z, 90^\circ)$ (geodesic metric).

For any *A* of area at least half of the sphere and $\epsilon > 0$,

$$\mu(A_{\epsilon}) \ge \phi_{1/2}(\epsilon) \ge 1 - e^{-(d-1)\epsilon^2/2}$$

where $0 < \epsilon < \pi = 180^{\circ}$ the exponential bound is derived for the geodesic metric in Section 2.1 of Ledoux (2001).

Eucledian d has $1 - e^{-d\epsilon^2/2}$ (Lemma 2.2 of Ball (1997)).

The above may be used to justify that the area of the sphere concentrates on the equator of the center z of C (next slide).

Since *z* is arbitrary, μ concentrates on every equator!

The equator $\mathscr{C}(z) = \{v \in \mathbb{S}^{d-1} : \langle v, z \rangle = 0\}$ with respect to $z \in \mathbb{S}^{d-1}$ is all points perpendicular to z, e.g., $x, y \in \mathscr{C}(z)$.

Note, $\mathscr{C}(z) = \partial C(z, 90^\circ)$, the boundary of the half-sphere.

- The upper cap $C(z, 90^{\circ} + \epsilon)$ contains $1 e^{-(d-1)\epsilon^2/2}$ fraction of the total area $\mu(\mathbb{S}^{d-1}) = 1$.
- The lower cap $C(-z, 90^{\circ} + \epsilon)$ contains $1 e^{-(d-1)\epsilon^2/2}$.

- It follows that $\mathscr{C}_{\epsilon}(z) = C(z, 90^{\circ} + \epsilon) \cap C(-z, 90^{\circ} + \epsilon)$ has area at least $1 - 2e^{-(d-1)\epsilon^2/2}$ (close to 1 for large d). Concentration of measure

Let (X, d) be a metric space and μ denote a Borel probability (i.e. open sets are with respect to d) measure with $\mu(X) = 1$.

Theorem. If $f : \mathbb{X} \to \mathbb{R}$ is Lipschitz with constant L, then there is a constant $M \in \mathbb{R}$ such that for any $\epsilon > 0$,

$$\mu\left(x \in \mathbb{X} : |f(x) - M| \ge \epsilon\right) \le 2(1 - \phi_{1/2}(\epsilon/L))$$

REMARKS.

- f Lipschitz means there exists a constant L such that

$$|f(x) - f(y)| \le Ld(x, y), \quad \forall x, y \in \mathbb{X}.$$

(i.e., the function f is relatively "smooth")

- $M = \inf\{t \in \mathbb{R} : \mu(x \in \mathbb{X} : f(x) > t) \ge 1/2\}$ (the median) but also holds for $M = \int_{\mathbb{X}} f(x) d\mu(x)$ (mean).
- When $\phi_{1/2}(\epsilon/L)$ is close to 1, this states that "smooth functions in high dimensional spaces are nearly constant".
- In the context of Monte Carlo integration, the function f is easy to integrate if $\phi_{1/2}(\epsilon/L)$ is close to 1.

Let (X, d) be a metric space and μ denote a Borel probability (i.e. open sets are with respect to d) measure with $\mu(X) = 1$.

Theorem. If $f : \mathbb{X} \to \mathbb{R}$ is Lipschitz with constant *L*, then there is a constant $M \in \mathbb{R}$ such that for any $\epsilon > 0$,

$$\mu\left(x \in \mathbb{X} : |f(x) - M| \ge \epsilon\right) \le 2(1 - \phi_{1/2}(\epsilon/L))$$

PROOF OUTLINE.

- Letting
$$\{x \in \mathbb{X} : |f(x) - M| \ge \epsilon\} = U \cup V.$$

$$U = \{x \in \mathbb{X} : f(x) \le M - \epsilon\}$$

$$V = \{x \in \mathbb{X} : f(x) \ge M + \epsilon\}$$

- We will let $A = \{x \in \mathbb{X} : f(x) > M\}$ and show that $U \subseteq A_{\epsilon/L}$ which has $\mu(A) \ge 1/2$ (by definition of M).

- Then $\mu(U) \le \mu(A_{\epsilon/L}^c) = 1 - \mu(A_{\epsilon/L}) \le 1 - \phi_{1/2}(\epsilon/L).$

- Similarly, $\mu(V) \le \mu(A_{\epsilon/L}^c) \le 1 - \phi_{1/2}(\epsilon/L)$ but now with $A = \{x \in \mathbb{X} : f(x) \le M\}$ which also has $\mu(A) \ge 1/2$.

Proof.

- Let $A = \{z \in X : f(z) > M\}$ and note that $\mu(A) \ge 1/2$ by the definition of the median M. We prove that,

 $\mu(U) = \mu(\{x \in \mathbb{X} : f(x) \le M - \epsilon\}) \le 1 - \mu(A_{\epsilon/L})$

where $A_{\epsilon/L}$ is the ϵ -neighborhood of A.

- The isoperimetric inequality $\mu(A_{\epsilon/L}) \ge \phi_{1/2}(\epsilon/L)$ then completes the U part of the theorem (the V part is similar).
- This reduces the calculation of the measure of a set $A_{\epsilon/L}$ to an isoperimetric problem/inequality.
- Let $x \in U = \{x \in \mathbb{X} : f(x) \ge M + \epsilon\}$ to show $x \in A_{\epsilon/L}^c$ which implies $\mu(U) \le 1 - \mu(A_{\epsilon/L})$ as required. Note,

$$f(x) \le M - \epsilon < f(y) - \epsilon$$

for all $y \in A$ (because f(y) > M)

- This violates the Lipschitz property of f unless out point x satisfies $d(x, y) > \epsilon/L$. It follows that $x \in A_{\epsilon/L}^c$.

Johnstone-Lindenstrauss lemma

Figure 5.2 In Johnson-Lindenstrauss Lemma, the dimension of the data is reduced by projection onto a random low-dimensional subspace.

See Chapter 5 Section 5.3 in Vershynin (2018).

Project N points in \mathbb{R}^d into an *m*-dimensional space ($m \ll d$).

- Let \mathcal{D}_N be a set of N points in \mathbb{R}^d .
- Let E be a (uniformly) random m-dim. subspace of \mathbb{R}^d .
- Let P denote the orthogonal projection onto E. e.g., for a $m \times d$ matrix X with i.i.d. entries $X_{ij} \sim N(0, 1)$,

$$P = X(X^{\top}X)^{-1}X^{\top}$$

- Let μ be the probability on the space on which X is defined.

JOHNSTONE-LINDENSTRASS. There are absolute constants C, c > 0 such that for all $\epsilon > 0$ and $m \ge (C/\epsilon^2) \log N$,

$$\mu(A_{\epsilon}) \ge 1 - 2e^{-c\epsilon^2 m} \ge 1 - 2N^{-c \times C}$$

(i.e. with high probability for m sufficiently large) where

$$A_{\epsilon} = \left\{ (1+\epsilon) \le \frac{|Px - Py|}{|x - y|} \sqrt{\frac{d}{m}} \le (1+\epsilon), \, \forall x, y \in \mathcal{D}_N \right\}.$$

i.e., all distances are preserved upto a scaling by $\sqrt{d/m}$ *.*

The proof of the Johnstone-Lindenstrauss lemma is based on Lévy's concentration of measure on the sphere.

The proof is given below Theorem 5.3.1 of Vershynin (2018).

Dvoretzky's theorem

Theorem (Dvoretzky). A random projection of a convex body in \mathbb{R}^d onto a subspace of dimension $k \leq C\epsilon^2 \log d$ is approximately a ball in \mathbb{R}^k with probability at least $1 - e^{-ck}$.

Proofs of statements similar to this one may be found in Ball (1997), Vershynin (2018) and Meckes (2019).

References

- Ball, K. (1997), 'An elementary introduction to modern convex geometry', *Flavors of geometry* **31**(1-58), 26.
- Figiel, T., Lindenstrauss, J. & Milman, V. (1977), 'The dimension of almost spherical sections of convex bodies', *Séminaire Maurey-Schwartz* pp. 1–13.
- Fourdrinier, D., Strawderman, W. E. & Wells, M. T. (2018), *Shrinkage estimation*, Springer.
- Gromov, M. (1980), 'Paul levy's isoperimetric inequality', *preprint IHES* 2, 398.
- James, W. & Stein, C. (1961), Estimation with quadratic loss, *in*'Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics', The Regents of the University of California.
- Ledoux, M. (2001), *The concentration of measure phenomenon*, number 89, American Mathematical Soc.

Lévy, P. & Pellegrino, F. (1951), 'Problèmes concrets d'analyse fonctionnelle', *(No Title)*.

- Li, S. (2010), 'Concise formulas for the area and volume of a hyperspherical cap', *Asian Journal of Mathematics & Statistics* 4(1), 66–70.
- Meckes, E. S. (2019), *The random matrix theory of the classical compact groups*, Vol. 218, Cambridge University Press.
- Mohamed, S., Rosca, M., Figurnov, M. & Mnih, A. (2020), 'Monte carlo gradient estimation in machine learning', *Journal of Machine Learning Research* 21(132), 1–62.
- Scheinberg, K. (2022), 'Finite difference gradient approximation: To randomize or not?', *INFORMS Journal on Computing* 34(5), 2384–2388.
- Steele, J. M. (2004), *The Cauchy-Schwarz master class: an introduction to the art of mathematical inequalities*, Cambridge University Press.

- Stein, C. (1955), Inadmissibility of the usual estimator for the mean of a multivariate normal distribution, *in* 'Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics', The Regents of the University of California.
- Vershynin, R. (2018), *High-dimensional probability: An introduction with applications in data science*, Vol. 47, Cambridge university press.