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Warm up



Problem on the hypercube Œ�2; 2�d (taken from Steele (2004)).

Compute the radius of the central sphere for any d � 2.
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The radius of the inner sphere is compute via,
p

d22

2
� 1 D

p
d � 1

so that the sphere exists the box for dimensions d > 9.

The fraction of the volume the central sphere occupies in the
cube Œ�2; 2�d tends to zero exponentially in d (Steele 2004).

High dimensional space oddity
(https://arxiv.org/abs/2409.13046).

– What is the fraction of light emanating from the origin that
leaves the cube (none for d D 2)?

– “We could not answer this question using geometry. ... Our
solution is probabilistic in nature.”
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https://arxiv.org/abs/2409.13046


Collection of lectures on convex geometry (Ball 1997).
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https://www.math.uchicago.edu/~shmuel/AAT-readings/Combinatorial Geometry, Concentration, Real Algebraic Geometry/ball.pdf


Notation.

d denotes the dimension.

For u D .u1; : : : ; um/ 2 Rm and v D .v1; : : : ; vm/ 2 Rm we let
hx; yi D

Pn
iD1 xiyj denote the standard inner product.

jxj D
p

hx; xi, the Eucledian length.
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Geometric LLN and Stein’s paradox



– Stein (1955),

Let X D � C � be a noisy observation of vector � 2 Rd .

– This is the classical setting of observing X � N.�; Id / to
estimate the population mean � (in the above image n D d ).

– X is the maximum likelyhood estimator of the unknown � .

– Stein’s paradox concerns the existence of X 0 2 Rd such that

E jX 0
� �j < E jX � �j

This is possible for d � 3 (dimension n is above image)
(https://en.wikipedia.org/wiki/Stein'sexample)
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https://en.wikipedia.org/wiki/Stein's example


Example from Stigler’s 1988 Neyman Memorial Lecture.

Let X be the price of apples in Washington.

X D
1

n

nX
iD1

Xi 2 R

Let Y be the price of oranges in Florida. 
X

Y

!
D

1

n

nX
iD1

 
Xi

Yi

!
2 R2

Finally, let Z be the price of wine in France.

Q D

0B@ X

Y

Z

1CA D
1

n

nX
iD1

0B@ X

Y

Z

1CA 2 R3

There is an estimator better than Q (in mean-squared error).
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We begin with X D � C � but instead of assuming that the
noise � � N.0; Id / we use geometrical arguments.

Pictured are X; � 2 Rd and � D X � � (the noise vector).
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The � 2 Rd is unknown (we only see the observation X ).

To make things easier assume the length j�j is known. But even
when given j�j it is not clear how to improve the estimate X .

– The unknown � could be on any point on the circle pictured.
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Add any point m 2 Rd . We now have the vectors � D � � ˇ

and w D m � � with ˛d denoting the angle between them.

The vector m 2 Rp is treated as nonrandom (or independent).

– For a low dimension d we cannot say more, but ...
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As the dimension d becomes large, the angle ˛d tends to 90ı

with high probability (given mild assumptions on the noise).
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Geometric LLN.

hX � �; m � �i=d D h�; wi=d D
1

d

dX
iD1

wi�i ! 0

As d " 1 the angle p̨ between � and w D m � � tends to 90ı.

– The convergence above may be viewed as a law of large
number for non-identical random variables.
(e.g., https://arxiv.org/pdf/1701.02234)

– Noise (pure randomness) is orthogonal to (or independent
of) any high dimensional vector not corrupted by it.

– Very similar to the concentration of measure result due to
Borel 1914 (mass of hypercube concentrates on equator).
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https://arxiv.org/pdf/1701.02234


Borel 1914 – Concentration of mass of hypercube on its equator.

A point u is on the equator of the hypercube Œ0; 1�d whenever,

hu � v; vi D 0

where v D .1
2
; : : : ; 1

2
/ is the center of the hypercube.
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Define X js as the closest point to � on the line segment
between X and m (this is the James-Stein estimator).

– See James & Stein (1961) for m D 0d and finite d > 2.
– We took X js D X C c.X � m/ for any m 2 Rd .
– We will be able to estimate c 2 Œ0; 1� in the limit d " 1.

Once we reach dimension 1 the geometry above may be
computed via the Pythagorean theorem (i.e. ˛1 D 90ı).

– Each length pictured is scaled by j�j (the only left unknown).
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Letting � be a d -consistent estimate1 of j�j D jX � �j, let

X js
D m C c.X � m/;

�
c D 1 �

�2

jX � mj2

�
Theorem. If both j�j2=p and j�j2=p are bounded in .0; 1/ as
the dimension d " 1 and the Geometric lln holds,

jX js
� �j �

p
cjX � �j:

with
p

c is eventually in the interval .0; 1/.

–– We write ad � bd provided limd"1 ad=bd D 1.

– For large dimension X js is clearly preferred to X and this
works for any choice of m (hence Stein’s paradox).

1For this we require two observations of � and putting them in a d � 2 matrix M it may be
shown that �2 defined as the second eigenvalue of M >M satisfies � � j�j as d " 1.
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Proof sketch.

– Start with X.c/ D m C c.X � m/ and minimize the error
function c 7! jX.c/ � �j2 to obtain the minimizer,

c�
D

hX � m; � � mi

jX � mj2
D 1 �

hX � m; �i

jX � mj2
:

– Show that jc � c�j with c as stated in the theorem vanishes
as d tends to infinity assuming the geometric lln.

– Deduce that h� � X.c�/; m � X.c�/i D 0 which establishes
the right angle at X JS in the limit as shown in the figure.

– Using that � � j�j compute all the lenghts between the
points .X; �; m; X JS/ in the infinite dimensional limit.
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An application. We saw the goal of Monte Carlo integration is
to estimate intergrals such as

R
D f .x/dx for some domainD.

Let � 2 Rd be some high dimensional set of parameters, and

F.�/ D

Z
D

f .x; �/dx:

In many application we wish to estimate the gradient of F ,

r�F.�/ D

�dF.�/

d�1

; : : : ;
dF.�/

d�d

�
2 Rd

Mohamed et al. (2020) apply Monte Carlo integration (given
r�f .x; �/ may be computed) to estimate r�F.�/.

– The discuss many applications to inference, reinforcement
learning, queuing theory, sensitivity analysis, etc.

Taking X D r�F.�/ C � we could use X js to possibly improve
upon Monte Carlo estimates when d is large.

Related is also the area of “derivative free optimization” which
does not assume r�f .x; �/ is known (see Scheinberg (2022)).
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The estimator X is called inadmissible because, for large
enough d , the James-Stein estimator X js improves upon it.

The vector m is called the “shrinkage target”.

17



The James-Stein estimator has inspired the area of shrinkage
estimation in statistics (Fourdrinier et al. 2018).
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Isoperimetric problem



Let .X; d/ be a metric space.

– d.x; y/ is the distance between x; y 2 X.

– d.x; A/ D infy2A d.x; y/.

Consider the �-neighborhood of A, i.e. for � > 0,

A� D fx 2 X W d.x; A/ � �g

For fixed � > 0, we define the function �v as follows.

�v.�/ D inf
A�X

f�.A�/ W �.A/ � vg

Isoperimetric problem. “Of all shapes A with volume V , what is
the one that minimizes the volume of the �-neighborhood of A.”

– Few explicit solutions are known (e.g., most notably the
constant curvature spaces; see Section 2.1 of Ledoux (2001)).

– Lower bounds for the function �v are good enough (see
concentration of measure below).
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Geometric/functional analysis perspective (with mix of
probability where it is helpful) – Ledoux (2001).
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The isoperimetric problem on Rd

Let � measure volume in Rd uniformly, e.g., the �-measure of a
box Œa1; b1� � � � � � Œad ; bd � � Rd is given by,

�.Œa1; b1� � � � � � Œad ; bd �/ D
Qd

iD1.bi � ai/:

Let d be the Euclidean metric (e.g., d.x; y/ D jx � yj).

Consider all A � Rd of fixed volume v D �.A/.

The body A that minimizes �.A�/ is the Euclidean ball B , i.e.,

B D B.x; r/ D fv 2 Rd
jd.x; v/ � rg

where the radius of the ball r is set to achieve �.B/ D v. The
center x of B does not change the volume v.

Then, �v.�/ D �.B�/ and B� D B.x; r C �/ is also a ball just
like B D B.x; r/ but with the larger radius r C �.

This is a corollary of Brunn-Minkowski inequality
(see Theorem 5.2 and Lecture 8 in Ball (1997)).
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Illustration of the isoperimetric problem in Rd .

The box, the ball and the star A all have volume v D �.A/.
Their �-neighborhoods are pictured with a dashed boundary.

Out of the three A (and every set of volume v) the ball A D B

(middle) minimizes the volume of its �-neighborhood �.A�/

The ball B also minimizes the surface area of any body A � Rd

provided that �.A/ D �.B/ (Theorem 5.3 in Ball (1997).
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The isoperimetric inequality on Rd

Let B D fy 2 Rd W d.x; y/ � rg be a Euclidean ball of radius
r centered at x. Let �.B/ D v be its volume (unchanged by x).

We have the following isoperimetric inequality on Rd . For all
measurable A � Rd of volume v D �.A/ D �.B/ and � > 0,

�.A�/ � �.B�/ D �v.�/:

This says that “growing” a body A to its �-neighborhood takes
up the least volume for A D B , the Euclidean ball.

The advantage is that �.B�/ is much easier to calculate than
would �.A�/ be for many useful A encountered in applications.

We can apply this result to see where the uniform measure �

concentrates inside the hypercube Œ0; 1�d � Rd .
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Let A � Œ0; 1�d with �.A/ � 1=2 (i.e., A is a body in the
hypercube occupying at least half its volume; �.Œ0; 1�d / D 1).

Let v.r/ denote the volume �.B/ of a ball B of radius r > 0.
Fix a ball B to have volume v.rd / D 1=2. It’s radius has
rd �

p
d (i.e., rdp

d
! 1). 2 By the isoperimetric inequality,

�.A�/ � �.B�/ D v.rd C �/

Some further calculations yield v.rd C �/ � 1 � e���2

.

– For any A in Œ0; 1�d of more than half the volume of Œ0; 1�d ,
the �-neighborhood volume grows exponentially in �2.

The largest distance between any two corner of the hypercube
is

p
d , so provided that Aı

p
d � Œ0; 1�d for some ı > 0,

�.Ac

ı
p

d
/ � e��ı2d

which tends to zero exponentially fast in the dimension.

2see (www.wikipedia.org/wiki/Volume_of_an_n-ball)
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Another classical domain is Sd�1 D fx 2 Rd W jxj D 1g,
the surface of a sphere of radius 1 in d -dimensions.

Let � be the uniform area measure on Sd�1 with �.Sd�1/ D 1.

– This means the �.A/ D �.RA/ where RA is any rotation
of A � Sd�1 (www.wikipedia.org/wiki/Rotation_matrix).

– Statistically, a vector u 2 Sd�1 from the distribution � will
be “equally likely to be at any point in Rd�1”.3

We can let d be the Euclidean metric or geodesic distance.

– d.x; y/ D jx � yj for x 2 Sd�1 for Euclidean metric.

– d.x; y/ D arccoshx; yi for x 2 Sd�1 for geodesic metric
(this is just the length of the arc between x and y on Sd�1).

Either metric may be used to define spherical cap,

C D C.´; r/ D fv 2 Sd�1
W d.´; v/ � rg;

i.e., all points within distance/angle r of the cap center ´ 2 Sd�1.

3Of course this event has measure zero.
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C.´; r/ is in fact a ball on Sd�1 centered at ´ and with radius r .

– The cap C.´; r/ contains all area above the dashed line.

– The illustrated cap C.´; r/ uses angle r1 with the geodesic
metric and r2 with the Euclidean metric (set to match area).

– r1 ¤ r2 when describing the same cap with different metrics.

– Above u 2 @C.´; r/, the boundary of the cap (at maximal
angle r1), and v 2 C.´; r/ at some angle smaller than r1.
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The isoperimetric problem on Sd�1.

Let � be the uniform surface area measure on Sd�1.

Let d be the Euclidean metric or geodesic distance.

Consider all A � Rd of fixed area a D �.A/.

The body A that minimizes �.A�/ is the spherical cap C , i.e.,

C D C.´; r/ D fv 2 Sd�1
W d.´; v/ � rg

where the radius r of the cap is set to achieve area �.C / D a.
The center ´ of C does not change the area a.

Then, �v.�/ D �.C�/ and C� D C.´; r C �/ is also a cap just
like C D B.´; r/ but with the larger radius r C �.

The proof is difficult to find/read (Chapter IV of Part 3 of Lévy
& Pellegrino (1951) credited to Lévy and dating to 1919).

– A self-contained proof is in Section 8 of Figiel et al. (1977).

– Gromov (1980) generalizes to Riemannian manifolds (exact
answers known only for constant curvature).
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The isoperimetric inequality on Sd�1

Let C D fv 2 Sd�1 W d.´; v/ � rg be a Euclidean ball of radius
r centered at ´. Let �.C / D a be its area (unchanged by ´).

We have the following isoperimetric inequality on Sd�1. For all
measurable A � Sd�1 with a D �.A/ D �.C / and � > 0,

�.A�/ � �.C�/ D �a.�/:

This says that “growing” an area A to its �-neighborhood takes
up the least the area of A D C , the spherical cap.

The advantage is that �.C�/ is much easier to calculate than
would �.A�/ be for many useful A encountered in applications.

For calculations of areas of spherical caps of Sd�1 see Li (2010).

Bounds are derived in Lecture 2 of Ball (1997). These give the
famous concentration on the equation result (next slide).
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Consider any area A on S�1 with measure �.A/ � 1=2

(i.e., A occupies at least half the sphere).

The spherical cap C with area �.C / D 1=2 extends to the
“equator” of the sphere, i.e. C D C.´; 90ı/ (geodesic metric).

For any A of area at least half of the sphere and � > 0,

�.A�/ � �1=2.�/ � 1 � e�.d�1/�2=2

where 0 < � < � D 180ı the exponential bound is derived for
the geodesic metric in Section 2.1 of Ledoux (2001).

Eucledian d has 1 � e�d�2=2 (Lemma 2.2 of Ball (1997)).

The above may be used to justify that the area of the sphere
concentrates on the equator of the center ´ of C (next slide).

Since ´ is arbitrary, � concentrates on every equator!
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The equatorE.´/ D fv 2 Sd�1 W hv; ´i D 0g with respect to
´ 2 Sd�1 is all points perpendicular to ´, e.g., x; y 2 E.´/.

Note,E.´/ D @C.´; 90ı/, the boundary of the half-sphere.

– The upper cap C.´; 90ı C �/ contains 1 � e�.d�1/�2=2

fraction of the total area �.Sd�1/ D 1.

– The lower cap C.�´; 90ı C �/ contains 1 � e�.d�1/�2=2.

– It follows thatE�.´/ D C.´; 90ı C �/ \ C.�´; 90ı C �/

has area at least 1 � 2e�.d�1/�2=2 (close to 1 for large d ).
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Concentration of measure



Let .X; d/ be a metric space and � denote a Borel probability
(i.e. open sets are with respect to d) measure with �.X/ D 1.

Theorem. If f W X ! R is Lipschitz with constant L, then
there is a constant M 2 R such that for any � > 0,

�
�
x 2 X W jf .x/ � M j � �

�
� 2.1 � �1=2.�=L//

Remarks.

– f Lipschitz means there exists a constant L such that

jf .x/ � f .y/j � Ld.x; y/; 8x; y 2 X:

(i.e., the function f is relatively “smooth”)

– M D infft 2 R W �.x 2 X W f .x/ > t/ � 1=2g (the
median) but also holds for M D

R
X f .x/d�.x/ (mean).

– When �1=2.�=L/ is close to 1, this states that “smooth
functions in high dimensional spaces are nearly constant”.

– In the context of Monte Carlo integration, the function f is
easy to integrate if �1=2.�=L/ is close to 1.
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Let .X; d/ be a metric space and � denote a Borel probability
(i.e. open sets are with respect to d) measure with �.X/ D 1.

Theorem. If f W X ! R is Lipschitz with constant L, then
there is a constant M 2 R such that for any � > 0,

�
�
x 2 X W jf .x/ � M j � �

�
� 2.1 � �1=2.�=L//

Proof outline.

– Letting fx 2 X W jf .x/ � M j � �g D U [ V .

U D
˚
x 2 X W f .x/ � M � �

	
V D

˚
x 2 X W f .x/ � M C �

	
– We will let A D fx 2 X W f .x/ > M g and show that

U � A�=L which has �.A/ � 1=2 (by definition of M ).

– Then �.U / � �.Ac
�=L/ D 1 � �.A�=L/ � 1 � �1=2.�=L/.

– Similarly, �.V / � �.Ac
�=L/ � 1 � �1=2.�=L/ but now with

A D fx 2 X W f .x/ � M g which also has �.A/ � 1=2.
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Proof.

– Let A D f´ 2 X W f .´/ > M g and note that �.A/ � 1=2

by the definition of the median M . We prove that,

�.U / D �
�
fx 2 X W f .x/ � M � �g

�
� 1 � �.A�=L/

where A�=L is the �-neighborhood of A.

– The isoperimetric inequality �.A�=L/ � �1=2.�=L/ then
completes the U part of the theorem (the V part is similar).

– This reduces the calculation of the measure of a set A�=L to
an isoperimetric problem/inequality.

– Let x 2 U D fx 2 X W f .x/ � M C �g to show x 2 Ac
�=L

which implies �.U / � 1 � �.A�=L/ as required. Note,

f .x/ � M � � < f .y/ � �

for all y 2 A (because f .y/ > M )

– This violates the Lipschitz property of f unless out point x

satisfies d.x; y/ > �=L. It follows that x 2 Ac
�=L.
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Johnstone-Lindenstrauss lemma



See Chapter 5 Section 5.3 in Vershynin (2018).
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Project N points in Rd into an m-dimensional space (m � d ).

– Let DN be a set of N points in Rd .

– Let E be a (uniformly) random m-dim. subspace of Rd .

– Let P denote the orthogonal projection onto E .
e.g., for a m � d matrix X with i.i.d. entries Xij � N.0; 1/,

P D X.X>X/�1X>

– Let � be the probability on the space on which X is defined.

Johnstone-Lindenstrass. There are absolute constants
C; c > 0 such that for all � > 0 and m � .C=�2/ log N ,

�.A�/ � 1 � 2e�c�2m
� 1 � 2N �c�C

(i.e. with high probability for m sufficiently large) where

A� D

n
.1 C �/ �

jP x � Pyj

jx � yj

r
d

m
� .1 C �/; 8x; y 2 DN

o
:

i.e., all distances are preserved upto a scaling by
p

d=m.
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The proof of the Johnstone-Lindenstrauss lemma is based on
Lévy’s concentration of measure on the sphere.

The proof is given below Theorem 5.3.1 of Vershynin (2018).
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Dvoretzky’s theorem



Theorem (Dvoretzky). A random projection of a convex body
in Rd onto a subspace of dimension k � C�2 log d is
approximately a ball in Rk with probability at least 1 � e�ck .

Proofs of statements similar to this one may be found in Ball
(1997), Vershynin (2018) and Meckes (2019).

37



References

Ball, K. (1997), ‘An elementary introduction to modern convex
geometry’, Flavors of geometry 31(1-58), 26.

Figiel, T., Lindenstrauss, J. & Milman, V. (1977), ‘The dimension
of almost spherical sections of convex bodies’, Séminaire
Maurey-Schwartz pp. 1–13.

Fourdrinier, D., Strawderman, W. E. & Wells, M. T. (2018),
Shrinkage estimation, Springer.

Gromov, M. (1980), ‘Paul levy’s isoperimetric inequality’,
preprint IHES 2, 398.

James, W. & Stein, C. (1961), Estimation with quadratic loss, in
‘Proceedings of the Fourth Berkeley Symposium on
Mathematical Statistics and Probability, Volume 1:
Contributions to the Theory of Statistics’, The Regents of the
University of California.

Ledoux, M. (2001), The concentration of measure phenomenon,
number 89, American Mathematical Soc.

38



Lévy, P. & Pellegrino, F. (1951), ‘Problèmes concrets d’analyse
fonctionnelle’, (No Title) .

Li, S. (2010), ‘Concise formulas for the area and volume of a
hyperspherical cap’, Asian Journal of Mathematics & Statistics
4(1), 66–70.

Meckes, E. S. (2019), The random matrix theory of the classical
compact groups, Vol. 218, Cambridge University Press.

Mohamed, S., Rosca, M., Figurnov, M. & Mnih, A. (2020), ‘Monte
carlo gradient estimation in machine learning’, Journal of
Machine Learning Research 21(132), 1–62.

Scheinberg, K. (2022), ‘Finite difference gradient
approximation: To randomize or not?’, INFORMS Journal on
Computing 34(5), 2384–2388.

Steele, J. M. (2004), The Cauchy-Schwarz master class: an
introduction to the art of mathematical inequalities,
Cambridge University Press.

39



Stein, C. (1955), Inadmissibility of the usual estimator for the
mean of a multivariate normal distribution, in ‘Proceedings
of the Third Berkeley Symposium on Mathematical Statistics
and Probability, Volume 1: Contributions to the Theory of
Statistics’, The Regents of the University of California.

Vershynin, R. (2018), High-dimensional probability: An
introduction with applications in data science, Vol. 47,
Cambridge university press.

40


	Warm up
	Geometric LLN and Stein's paradox
	Isoperimetric problem
	Concentration of measure
	Johnstone-Lindenstrauss lemma
	Dvoretzky's theorem
	References

