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Multiple Anchor Point Shrinkage for the Sample Covariance Matrix\ast 
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Abstract. Estimation of the covariance of a high-dimensional returns vector is well-known to be impeded by
the lack of long data history. We extend the work of Goldberg, Papanicolaou, and Shkolnik [SIAM
J. Financial Math., 13 (2022), pp. 521--550] on shrinkage estimates for the leading eigenvector of the
covariance matrix in the high-dimensional, low sample size regime, which has immediate application
to estimating minimum variance portfolios. We introduce a more general framework of shrinkage
targets---multiple anchor point shrinkage---that allows the practitioner to incorporate additional
information---such as sector separation of equity betas, or prior beta estimates from the recent
past---to the estimation. We prove some asymptotic statements and illustrate our results with some
numerical experiments.
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1. Introduction. This paper is about the problem of estimating covariance matrices for
large random vectors, when the data for estimation is a relatively small sample. We discuss a
shrinkage approach to reducing the estimation error asymptotically in the high-dimensional,
bounded sample size regime, denoted HL. We note at the outset that this context differs
from that of the more well-known random matrix theory of the asymptotic ``HH regime"" in
which the sample size grows in proportion to the dimension (e.g., [8]). See [19] for an earlier
discussion of the HL regime and [9] for a discussion of the estimation problem for factor models
in high dimension.

Our interest in the HL asymptotic regime comes from the problem of portfolio optimization
in financial markets. There, a portfolio manager is likely to confront a large number of assets,
like stocks, in a universe of hundreds or thousands of individual issues. However, typical
return periods of days, weeks, or months, combined with the irrelevance of the distant past,
mean that the useful length of data time series is usually much shorter than the dimension of
the returns vectors being estimated.

In this paper we extend the successful shrinkage approach introduced in [14] (GPS for
Goldberg, Papanicolaou, and Shkolnik) to a framework that allows the user to incorporate
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MULTIPLE ANCHOR POINT SHRINKAGE 1113

additional information into the shrinkage target and improve results. Our ``multiple anchor
point shrinkage"" (MAPS) approach includes the GPS method as a special case.

The problem of sampling error for portfolio optimization has been widely studied ever
since Markowitz [25] introduced the approach of mean-variance optimization. That paper
immediately gave rise to the importance of estimating the covariance matrix \Sigma of asset returns,
as the risk, measured by variance of returns, is given by wT\Sigma w, where w is the vector of weights
defining the portfolio.

For a survey of various approaches over the years, see [14] and references therein. Reducing
the number of parameters via factor models has long been standard; see, for example, [26]
and [27]. The applicability of factor models in a very general HL setting is justified by [3].
Discussion of consistent estimation of factors in the HL and HH regimes is contained in [5]
and [6]. There, the HH regime in which both p and n tend to infinity is required for exact
consistency. In comparison, Theorem 2.3 below attains a consistent estimator of a single factor
in the HL setting for a bounded number of observations.

[30] and [12] initiated a Bayesian approach to portfolio estimation and the efficient frontier.
Practitioners are frequently interested in estimating the sensitivity (called ``beta"") of asset
returns to the overall market return. Vasicek used a prior cross-sectional distribution for
betas to produce an empirical Bayes estimator for beta that amounts to shrinking the least-
squares estimator toward the prior in an optimal way. This is one of a number of ``shrinkage""
approaches in which initial sample estimates of the covariance matrix are ``shrunk"" toward
a prior, e.g., [21], [2], [22], [23], [10]. [24] describes a nonlinear shrinkage estimator of the
covariance matrix focused on correcting the eigenvalues, set in the HH asymptotic regime.
A number of results in the HL and HH regimes related to correcting biases in the spiked
covariance setting of factor models are described in [31].

The key insight of [14] was to identify the principal component analysis (PCA) leading
eigenvector of the sample covariance matrix as the primary culprit contributing to sampling
error for the minimum variance portfolio problem in the HL asymptotic regime. Their ap-
proach to eigenvector shrinkage is not explicitly Bayesian but can be viewed in that spirit (see
section 2.5). This is the starting point for the present work.

It is worth pointing out that shrinkage approaches to estimation are far broader than esti-
mating covariance matrices. The books [11] and [16] discuss an array of shrinkage estimators,
mainly centered on the famous James--Stein (JS) estimator [20], [7]. The JS estimator as a
prototype is not merely incidental to this work: it turns out that there are close structural
parallels between JS and GPS/MAPS, as described in the recent works [29] and [13].

1.1. Mathematical setting and background. Next we describe the mathematical setting,
motivation, and results in more detail. We restrict attention to a familiar and well-studied
(e.g., [28]) baseline model for financial returns: the one-factor, ``single-index"" or ``market,""
model

(1.1) r = \beta x+ z,

where r \in \BbbR p is a p-dimensional random vector of asset (excess) returns in a universe of p
assets, \beta \in \BbbR p is an unobserved nonzero vector of parameters to be estimated, x \in \BbbR isD
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1114 HUBEYB GURDOGAN AND ALEC KERCHEVAL

an unobserved random variable representing the common factor return, and z \in \BbbR p is an
unobserved random vector of residual returns specific to the individual assets.

With the assumption that the components of z are uncorrelated with x and each other, the
returns of different assets are correlated only through \beta , and therefore the covariance matrix
of r is

\Sigma = \sigma 2\beta \beta T +\Delta ,

where \sigma 2 denotes the variance of x, and \Delta is the diagonal covariance matrix of z. Typical
models in practice use multiple drivers of correlation, so this model represents a base case in
which to set our results. However, to the extent that we will measure success below by the
performance of the estimated minimum variance portfolio, to a good approximation only a
single market factor is relevant [4], [15].

Under the further simplifying model assumption1 that each component of z has a common
variance \delta 2 (also not observed), we obtain the covariance matrix of returns

(1.2) \Sigma = \sigma 2\beta \beta T + \delta 2I,

where I denotes the p\times p identity matrix.
This means that \beta , or its normalization b = \beta /| | \beta | | , is the leading eigenvector of \Sigma ,

corresponding to the largest eigenvalue \sigma 2| | \beta | | 2 + \delta 2. As estimating b becomes the most
significant part of the estimation problem for \Sigma , a natural approach is to take as an estimate
the first principal component (leading unit eigenvector) hPCA of the sample covariance of
returns data generated by the model. This PCA estimate is our starting point.

Consider the optimization problem

min
w\in \BbbR p

wT\Sigma w,

eTw = 1,

where e = (1, 1, . . . , 1), the vector of all ones.
The solution, the ``minimum variance portfolio,"" is the unique fully invested portfolio

minimizing the variance of returns. Of course the true covariance matrix \Sigma is not observable
and must be estimated from data. Denote an estimate by

(1.3) \^\Sigma = \^\sigma 2 \^\beta \^\beta T + \^\delta 2I

corresponding to estimated parameters \^\sigma , \^\beta , and \^\delta .
Let \^w denote the solution of the optimization problem

min
w\in \BbbR p

wT \^\Sigma w,

eTw = 1.

1The assumption of homogeneous residual variance \delta 2 is a mathematical convenience. If the diagonal
covariance matrix \Delta of residual returns can be reasonably estimated, then the problem can be rescaled as
\Delta  - 1/2\bfr = \Delta  - 1/2\beta x+\Delta  - 1/2\bfz , which has covariance matrix \sigma 2\beta \Delta \beta T

\Delta + I, where \beta \Delta = \Delta  - 1/2\beta .D
ow
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MULTIPLE ANCHOR POINT SHRINKAGE 1115

It is interesting to compare the estimated minimum variance

\^V 2 = \^wT \^\Sigma \^w

with the actual variance of \^w,
V 2 = \^wT\Sigma \^w,

and consider the variance forecast ratio V 2/ \^V 2 as one measure of the error made in the
estimation of minimum variance, hence of the covariance matrix \Sigma .

The remarkable fact proved in [14] is that, asymptotically as p tends to infinity with n
fixed, the true variance of the estimated portfolio doesn't depend on \^\sigma , \^\delta , or | | \^\beta | | , but only
on the unit eigenvector \^\beta /| | \^\beta | | . Under some mild assumptions stated later, they show the
following.

Definition 1.1. For a p-vector \beta = (\beta (1), . . . , \beta (p)), define the mean \mu (\beta ) and dispersion
d2(\beta ) of \beta by

(1.4) \mu (\beta ) =
1

p

p\sum 
i=1

\beta (i) and d2(\beta ) =
1

p

p\sum 
i=1

\biggl( 
\beta (i)

\mu (\beta )
 - 1

\biggr) 2

.

We use the notation for normalized vectors

b =
\beta 

| | \beta | | 
, q =

e
\surd 
p
, and h =

\^\beta 

| | \^\beta | | 
.

Proposition 1.1 ([14]). The true variance of the estimated portfolio \^w is given by

V 2 = \^wT\Sigma \^w = \sigma 2\mu 2(\beta )(1 + d2(\beta ))\scrE 2(h) + op,

where \scrE (h) is defined by

\scrE (h) = (b, q) - (b, h)(h, q)

1 - (h, q)2
,

and where the remainder op is such that for some constants c, C, c/p \leq op \leq C/p for all p.
In addition, the variance forecast ratio V 2/ \^V 2 is asymptotically equal to p\scrE 2(h).

Goldberg, Papanicolaou, and Shkolnik call the quantity \scrE (h) the optimization bias asso-
ciated to an estimate h of the true vector b. They note that the optimization bias \scrE (hPCA)
is asymptotically bounded above zero almost surely, and hence the variance forecast ratio
explodes as p\rightarrow \infty .

With this background, the estimation problem becomes focused on finding a better esti-
mate h of b from an observed time series of returns. GPS [14] introduces a shrinkage estimate
for b---the GPS estimator hGPS---obtained by ``shrinking"" the PCA eigenvector hPCA along
the unit sphere toward q, to reduce excess dispersion. That is, hGPS is obtained by moving a
specified distance (computed only from observed data) toward q along the spherical geodesic
connecting hPCA and q. ``Shrinkage"" refers to the reduced geodesic distance to the ``shrinkage
target"" q.D
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1116 HUBEYB GURDOGAN AND ALEC KERCHEVAL

The GPS estimator hGPS is a significant improvement on hPCA. First, \scrE (hGPS) tends
to zero with p, and in fact p\scrE 2(hGPS)/ log log(p) is bounded (proved in [17]). In [14] it
is conjectured, with numerical support, that E[p\scrE 2(hGPS)] is bounded in p, and hence the
expected variance forecast ratio remains bounded. Moreover, asymptotically hGPS is closer
than hPCA to the true value b in the \ell 2 norm, and it yields a portfolio with better tracking
error against the true minimum variance portfolio.

1.2. Our contributions. The purpose of this paper is to generalize the GPS estimator by
introducing a way to use additional information about beta to adjust the shrinkage target q
in order to improve the estimate.

We can consider the space of all possible shrinkage targets \tau as determined by the family
of all nontrivial proper linear subspaces L of \BbbR p as follows. Given L (assumed not orthogonal
to h), let the unit vector \tau (L) be the normalized orthogonal projection of h onto L. \tau (L)
is then a shrinkage target for h determined by L (and h). We will describe such a subspace
L as the linear span of a set of unit vectors called ``anchor points."" In the case of a single
anchor point q, note that \tau (span\{ q\} ) = q, so this case corresponds to the GPS shrinkage
target.

The MAPS estimator is a shrinkage estimator with a shrinkage target defined by an
arbitrary collection of anchor points, usually including q. When q is the only anchor point,
the MAPS estimator reduces to the GPS estimator. We can therefore think of the MAPS
approach as allowing for the incorporation of additional anchor points when this provides
additional information.

In Theorem 2.2, we show that expanding span\{ q\} by adding additional anchor points at
random asymptotically does no harm, but makes no improvement.

In Theorem 2.3, we show that if the user has certain mild a priori rank ordering infor-
mation about groups of components of \beta , even with no information about magnitudes, an
appropriately constructed MAPS estimator is a consistent estimator in the sense that it con-
verges exactly to the true vector b in the asymptotic limit, even though the sample size is held
fixed.

Theorem 2.4 shows that if the betas have positive serial correlation over recent history, then
adding the prior PCA estimator h as an anchor point improves the \ell 2 error in comparison
with the GPS estimator, even if the GPS estimator is computed with the same total data
history.

The benefit of improving the \ell 2 error in addition to the optimization bias is that it also al-
lows us to reduce the tracking error of the estimated minimum variance fully invested portfolio,
discussed in section 3 and Theorem 3.1.

In the next sections we present the main results. The framework, assumptions, and state-
ments of the main theorems are presented in sections 2 and 3. Some simulation experiments
are presented in section 4 to illustrate the impact of the main results for some specific situ-
ations. Proofs of the theorems of section 2 are organized in section 5, followed by section 6
describing some open questions for further work.

To limit the length of this article, the proofs of some of the needed technical propositions
and lemmas appear in a separate document [18], available online. Additional details and
computations may be found in [17].D
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MULTIPLE ANCHOR POINT SHRINKAGE 1117

2. Main theorems.

2.1. Assumptions and definitions. We consider a simple random sample history gener-
ated from the basic model (1.1). The sample data can be summarized as

(2.1) R = \beta XT + Z,

where R \in \BbbR p\times n holds the observed individual (excess) returns of p assets for a time window
that is set by n \geq 2 consecutive observations. We may consider the observables R to be
generated by nonobservable random variables \beta \in \BbbR p, X \in \BbbR n, and Z \in \BbbR p\times n.

The entries of X are the market factor returns for each observation time, the entries of
Z are the specific returns for each asset at each time, the entries of \beta are the exposure of
each asset to the market factor, and we interpret \beta as random but fixed at the start of the
observation window of times 1, 2, 3, . . . , n and remaining constant throughout the window.
Only R is observable.

In this paper we are interested in asymptotic results as p tends to infinity with n fixed.
Therefore we consider (2.1) as defining an infinite sequence of models, one for each p.

To specify the relationship between models with different values of p, we need a more
precise notation. We'll let \beta refer to an infinite sequence (\beta (1), \beta (2), . . . ) \in \BbbR \infty , and \beta p =
(\beta (1), . . . , \beta (p)) \in \BbbR p the vector obtained by truncation after p entries. When the value p is
understood or implied, we will frequently drop the superscript and write \beta for \beta p.

Similarly, Z \in \BbbR \infty \times n is a vector of n sequences (the columns), and Zp \in \BbbR p\times n is obtained
by truncating the sequences at p.

With this setup, passing from p to p+ 1 amounts to simply adding an additional asset to
the model without changing the existing p assets. The pth model is denoted

Rp = \beta pXT + Zp,

but for convenience we will often drop the superscript p in our notation when there is no
ambiguity, in favor of (2.1).

Let \mu p(\beta ) and dp(\beta ) \geq 0 denote the mean and dispersion of \beta p, given by

(2.2) \mu p(\beta ) =
1

p

p\sum 
i=1

\beta (i) and dp(\beta )
2 =

1

p

p\sum 
i=1

\biggl( 
\beta (i) - \mu p(\beta )

\mu p(\beta )

\biggr) 2

.

We make the following assumptions regarding \beta , X, and Z:
A1. (Regularity of beta) The entries \beta (i) of \beta are uniformly bounded, independent random

variables, fixed prior to time 1. The mean \mu p(\beta ) and dispersion dp(\beta ) converge to limits
\mu \infty (\beta ) \in (0,\infty ) and d\infty (\beta ) \in (0,\infty ).

A2. (Independence of beta, X, Z) \beta , X, and Z are jointly independent.
A3. (Regularity of X) The entries Xi of X are independent and identically distributed (iid)

random variables with mean zero, variance \sigma 2.
A4. (Regularity of Z) The entries Zij of Z have mean zero, finite variance \delta 2, and uniformly

bounded fourth moment. In addition, the n-dimensional rows of Z are mutually
independent, and within each row the entries are pairwise uncorrelated.2

2Note we do not assume \beta ,X, or Z are Normal or belong to any specific family of distributions.D
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1118 HUBEYB GURDOGAN AND ALEC KERCHEVAL

The assumptions above are for the sake of convenience and to simplify the statements
of results, but in practice they are nonbinding or can be partly relaxed. In assumption A1,
boundedness is automatic in a finite market, and the betas can be viewed as constants as a
special case if desired (until section 2.4). Once \beta is determined, it is held fixed during the
observation window of length n. In contrast, X and the columns of Z are drawn independently
at each of the n observations times. The existence of the limits \mu \infty (\beta ) and d\infty (\beta ) could be
relaxed by considering the limit superior and inferior of the sequence at the cost of more
complicated theorem statements, so long as lim inf \mu p(\beta ) \not = 0, with a change of sign if needed
to make it positive.

Assumptions A2 and A3 are conveniences that simplify the analysis and statements of
results. In [14] X and Z are only assumed uncorrelated, so the stronger independence as-
sumption, used in our proofs, is not necessary in all cases. Assumption A4 is one of a few
alternatives that serve the proofs. The fourth moment condition can be dropped in favor
of the additional assumption that the rows of Z are identically distributed, but we prefer
boundedness conditions as they are always satisfied in finite markets.

With the given assumptions the covariance matrix \Sigma \beta of R, conditional on \beta , is

(2.3) \Sigma \beta = \sigma 2\beta \beta T + \delta 2I.

Since \beta stays constant over the n observations, the sample covariance matrix 1
nRR

T converges
to \Sigma \beta almost surely if n is taken to \infty , and is the maximum likelihood estimator of \Sigma \beta .

We will work with normalized vectors on the unit sphere \BbbS p - 1 \subset \BbbR p. To that end we
define

(2.4) b =
\beta 

| | \beta | | 
, q =

e
\surd 
p
,

where e = ep = (1, 1, . . . , 1) \in \BbbR p, and | | .| | denotes the usual Euclidean norm.
The vector b is the leading eigenvector of \Sigma \beta (corresponding to the largest eigenvalue). We

denote by h the PCA estimator of b, i.e., h is the first principal component, or the unit leading
eigenvector, of the sample covariance matrix 1

nRR
T . For convenience we always select the sign

of the unit eigenvector h such that the inner product (h, q) > 0, ignoring the probability zero
case (h, q) = 0.

Since \beta and X appear in the model R = \beta X + Z only as a product, there is a scale
ambiguity that we can resolve by combining their scales into a single parameter \eta :

\eta p =
1

p
| \beta p| 2\sigma 2.

It is easy to verify that

\eta p = \mu p(\beta )
2(dp(\beta )

2 + 1)\sigma 2,

and therefore by our assumptions \eta p tends to a positive, finite limit \eta \infty as p\rightarrow \infty .
Our covariance matrix becomes

(2.5) \Sigma \beta \equiv \Sigma b = p\eta bbT + \delta 2I,D
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MULTIPLE ANCHOR POINT SHRINKAGE 1119

where we drop the superscript p when convenient. The scalars \eta , \delta and the unit vector b are
to be estimated by \^\eta , \^\delta , and h. As described above, asymptotically only the estimate h of b
will be significant. Improving this estimate is the main technical goal of this paper.

In [14] the PCA estimate h is replaced by an estimate hGPS that is ``data driven,"" meaning
that it is computable solely from the observed data R. We henceforth use the notation
hGPS = \^hq, for a reason that will be clear shortly. As an intermediate step we also consider a
nonobservable ``oracle"" version hq, defined as the point on the short \BbbS p - 1-geodesic joining h
to q that is closest to b. (Recall that both b and h are chosen to lie in the half-sphere centered
at q.) The oracle version is not data driven because it requires knowledge of the unobserved
vector b that we are trying to estimate, but it is a useful concept in the definition and analysis
of the data-driven version. Both the data-driven estimate \^hq and the oracle estimate hq can be
thought of as obtained from the eigenvector h via ``shrinkage"" along the geodesic connecting
h to the anchor point, q.

The GPS data-driven estimator \^hq is successful in improving the variance forecast ratio,
and in arriving at a better estimate of the true variance of the minimum variance portfolio.
In this paper we have the additional goal of reducing the \ell 2 error of the estimator, which, for
example, is helpful in reducing tracking error. To that end, we introduce the following new
data-driven estimator, denoted \^hL.

Let L = Lp \subset \BbbR p denote a nontrivial proper linear subspace of \BbbR p. If v is any vector in
\BbbR p, we write

proj
L

(v)

for the Euclidean orthogonal projection of v onto L. Denote by kp the dimension of Lp, with
1 \leq kp \leq p - 1.

Let h = hp denote our normalized leading eigenvector of 1
nR

p(Rp)T , s2p its largest eigen-
value, and l2p the average of the remaining nonzero eigenvalues. Then we define the data driven
MAPS estimator by

(2.6) \^hL =

\tau ph+ proj
L

(h)

| | \tau ph+ proj
L

(h)| | 
,

where

(2.7) \tau p =

\psi 2
p  - | | proj

L
(h)| | 2

1 - \psi 2
p

and \psi p =

\sqrt{} 
s2p  - l2p
s2p

.

Here \psi p measures the relative gap between s2p and l2p. The MAPS estimator can be viewed
as obtained by ``shrinking"" the PCA estimator h toward the target proj

L
(h) along the sphere

\BbbS p - 1 by a specified amount.
Recall that we sometimes use a superscript to emphasize the dimension of a vector and

use the notation (\cdot , \cdot ) for the Euclidean inner product of two vectors. The next lemma from
[14] describes the asymptotic limit of \psi p and inner products (hp, bp), (hp, qp), and (bp, qp) as
the dimension p tends to infinity.D
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1120 HUBEYB GURDOGAN AND ALEC KERCHEVAL

Lemma 2.1 ([14]). The limits \psi \infty = limp\rightarrow \infty \psi p, (h, b)\infty = limp\rightarrow \infty (hp, bp), (h, q)\infty =
limp\rightarrow \infty (hp, qp), and (b, q)\infty = limp\rightarrow \infty (bp, qp) exist almost surely. Moreover,

\psi \infty = (h, b)\infty \in (0, 1),

and
(h, q)\infty = (h, b)\infty (b, q)\infty \in (0, 1).

When L is the one-dimensional subspace spanned by the vector q, then \^hL is precisely the
GPS estimator \^hq, located along the short spherical geodesic connecting h to q. The phrase
``multiple anchor point"" comes from thinking of q as an ``anchor point"" shrinkage target in
the GPS paper and L as a subspace spanned one or more anchor points. The new shrinkage
target determined by L is the normalized orthogonal projection of h onto L. When L is the
one-dimensional subspace spanned by q, the normalized projection of h onto L is just q itself.
In the event that L is orthogonal to h, the MAPS estimator \^hL reverts to h itself.

2.2. The MAPS estimator with random extra anchor points. Does adding anchor points
to create a MAPS estimator from a higher-dimensional subspace improve the estimation? The
answer depends on whether there is any relevant information about b in the added anchor
points. In the case where there is no added information and we simply add new anchor points
at random, the next theorem says this doesn't help.

First some terminology. We say that Lp is a random linear subspace of \BbbR p if it is non-
trivial, proper, and the span of a collection of random, linearly independent unit vectors. The
random linear subspace Hp is a uniform random subspace of \BbbR p if, in addition, it has spanning
vectors that are uniformly distributed on the sphere \BbbS p - 1.3 We say Lp is independent of a
random variable \Psi if it has spanning vectors that are independent of \Psi .

Definition 2.1. A nondecreasing sequence \{ kp\} of positive integers is square root dominated
if

\infty \sum 
p=1

k2p
p2

<\infty .

For example, any nondecreasing sequence satisfying kp \leq Cp\alpha for some C > 0 and \alpha < 1/2
is square root dominated. Roughly speaking, a square root dominated sequence is one that
grows more slowly than

\surd 
p. In particular, any constant sequence qualifies.

Theorem 2.2. Let assumptions A1, A2, A3, and A4 hold. Suppose, for each p, Lp is a
random linear subspace and Hp is a uniform random subspace of \BbbR p. Suppose also that Lp is
independent of Z, and Hp is independent of both Z and \beta . Assume also the sequences dimLp

and dimHp are square root dominated.
Let L\prime 

p = span\{ Lp, q
p\} and H \prime 

p = span\{ Hp, q
p\} .

Then, almost surely,

lim sup
p\rightarrow \infty 

| | \^hL\prime  - b| | \leq lim
p\rightarrow \infty 

| | \^hq  - b| | ,(2.8)

3Uniform random subspaces are called Haar random subspaces in [18] because they can be defined alterna-
tively in terms of the Haar (uniform) measure on the orthogonal group.D
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MULTIPLE ANCHOR POINT SHRINKAGE 1121

(2.9) lim
p\rightarrow \infty 

| | \^hH\prime  - b| | = lim
p\rightarrow \infty 

| | \^hq  - b| | ,

and

(2.10) lim
p\rightarrow \infty 

| | \^hH  - b| | = lim
p\rightarrow \infty 

| | h - b| | .

The limits on the right-hand sides of (2.8), (2.9), and (2.10) exist by an easy application
of Lemma 2.1. The need for some upper bounds, such as square root domination, for the
dimensions of L and H can be understood by considering the extreme case of maximum
dimension p. In that case, the MAPS estimators all reduce to h itself, so (2.8) and (2.9) fail.

Theorem 2.2 says adding random anchor points to form a MAPS estimator does no harm
asymptotically, but also makes no improvement asymptotically. Inequality (2.8) says that
adding anchor points to q that are independent of Z creates a MAPS estimator that is asymp-
totically never worse, in the Euclidean distance, than the GPS estimator \^hq, though it might
be better (intuitively, if the MAPS estimator incorporates some addtional information about
\beta ).

Equation (2.9) says that the GPS estimator is asymptotically neither improved nor harmed
by adding extra anchor points uniformly at random when they are independent of \beta and Z.
Therefore the goal will be to find useful anchor points that take advantage of additional
information about \beta that might be available. Necessarily those anchor points will not be
independent of \beta , but can be thought of as creating choices of L\prime 

p to create a strict inequality
in (2.8).

Equation (2.10) confirms that the anchor point q used by the GPS estimator has value:
without it, a random selection of anchor points independent of \beta and Z will define a MAPS
estimator that is asymptotically no better than the PCA estimator h. While q is not random,
it has an implicit relationship to \beta coming from assumption A1, which is motivated by the fact
that equity betas are empirically observed to cluster around 1. In this sense, the nonrandom
anchor point q contains baseline information about \beta . This is one of the central intuitions
behind the GPS estimator in [14].

As a final remark, notice that in Theorem 2.2 we do not require L or H to be independent
of X (but X, Z, and \beta are mutually independent by assumption A2). The asymptotic analysis
in the proof requires independence from Z in order to apply a version of the strong law of
large numbers as p\rightarrow \infty . In contrast, X does not depend on p and so its contribution can be
controlled a priori uniformly in p.

2.3. The MAPS estimator with rank order information about the entries of beta. We
now wish to consider what kind of information about \beta could be added in the form of anchor
points to create an improved MAPS estimator.

In this section we consider rank order information. Use of estimated rank ordering of
unknown quantities is not new in finance, but has mostly been applied to estimated ordering
of returns rather than betas, such as in [1]. Here we consider order information about betas,
used in connection with shrinkage estimation.

It so happens that if a well-informed observer somehow knows the rank ordering of the
components of \beta p for each p---that is, which entry is the largest, which second largest, etc.---
then that information alone, without knowing the actual magnitudes, is sufficient to determineD
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1122 HUBEYB GURDOGAN AND ALEC KERCHEVAL

b asymptotically with zero error almost surely, using an appropriate MAPS estimator. The
resulting consistent estimator is unexpected because the asymptotics are not with regard to
sample size n tending to infinity, but rather dimension p\rightarrow \infty with fixed n.

In fact, significantly less information than this is needed to create a consistent MAPS
estimator in this sense. It suffices to be able to separate the components of beta into ordered
groups, where the rank ordering of the groups is known, but not the ordering within groups.
The meaning of ordered groups and the constraints on group sizes are explained below.

Definition 2.2. For any p \in \BbbN , let \scrP = \scrP (p) be a partition of the index set \{ 1, 2, . . . , p\} 
(i.e., a collection of pairwise disjoint nonempty subsets, called atoms, whose union is \{ 1, 2,
. . . , p\} ). The number of atoms of \scrP is denoted by | \scrP | .

We say the sequence of partitions \scrP (p) is semiuniform if there exists M > 0 such that for
all p,

(2.11) max
I\in \scrP (p)

| I| \leq M
p

| \scrP (p)| 
.

In other words, no atom is larger than a fixed multiple M of the average atom size.
Given \beta \in \BbbR p, we say \scrP is \beta -ordered if, for each distinct I, J \in \scrP , either maxi\in I \beta i \leq 

minj\in J \beta j or maxj\in J \beta j \leq minj\in I \beta i.

Intuitively, a semiuniform \beta -ordered partition \scrP (p) defines a way to organize the elements
\beta pi of \beta p into disjoint groups (atoms) that are of similar size, and such that for each group,
no element outside the group lies strictly in between two elements of the group.

It is easy to see that many such semiuniform \beta -ordered partitions always exist and are
easily constructed if a rank ordering of the betas is known. For example, for each p, first rank
order the elements of \beta p, then divide the elements into deciles by taking the largest 10 percent,
then the next 10 percent, etc., rounding as needed. The result is 10 atoms, and each atom is
approximately p/10 in size. If in addition we want the number of atoms to tend to infinity
with p, we can replace ``10 percent"" by a percentage that declines toward zero as p \rightarrow \infty . If
instead of 10 percent we choose 0 < \alpha < 1/2 and let the atoms be of size approximately p1 - \alpha ,
there will be approximately p\alpha atoms in the resulting semiuniform, \beta -ordered partition \scrP (p),
and the sequence | \scrP (p)| will be square root dominated.

Once we have such a partition, each atom A \subset \{ 1, 2, . . . , p\} defines an anchor point as
follows.

Definition 2.3. For any A \subset \{ 1, 2, . . . , p\} let 1A \in \BbbR p denote the vector defined by the
indicator function of A: 1A(i) = 0 if i \in A, and otherwise 1A(i) = 0. We may then define,
for any partition \scrP = \scrP (p), an induced linear subspace L(\scrP ) of \BbbR p by

(2.12) L(\scrP ) = spanp\{ 1A
\bigm| \bigm| A \in \scrP \} \equiv < 1A

\bigm| \bigm| A \in \scrP > .

Theorem 2.3. Let the assumptions A1, A2, A3, and A4 hold. Consider a semiuniform
sequence \{ \scrP (p) : p = 1, 2, 3, . . . \} of \beta -ordered partitions such that the sequence \{ | \scrP (p)| \} tends
to infinity and is square root dominated. Then

(2.13) lim
p\rightarrow \infty 

| | \^hL(\scrP (p))  - b| | = 0 almost surely.
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MULTIPLE ANCHOR POINT SHRINKAGE 1123

Theorem 2.3 says that if we have certain prior information about the ordering of the \beta 
elements in the sense of finding an ordered partition (but with no other prior information
about the actual magnitudes of the elements or their ordering within partition atoms), then
asymptotically we can estimate b exactly.

Having in hand a true \beta -ordered partition a priori will usually not be possible because
even the ordering of the betas is not likely to be known in practice. However, Theorem 2.3
suggests the hypothesis that partial grouped order information about the betas can still be
helpful in improving our estimate of \beta .

We test this hypothesis in section 4.2 by considering industry sectors as a proposed way
to form a partition of asset betas. To the extent that betas for equities belonging to the
same sector are similar, and separated from those of other sectors, the partition will be
approximately \beta -ordered. The experiments of section 4.2 illustrate, as least in that case, that
these approximations can suffice to create a MAPS estimator that improves on the PCA and
GPS versions.

2.4. A data-driven dynamic MAPS estimator. Theorem 2.4 of this section shows that
even with no a priori information about betas beyond the observed time series of returns, we
can still use the MAPS framework to improve the GPS estimator by making more efficient
use of the data history.

In the analysis above we have treated \beta as a constant throughout the sampling period,
but in reality we expect \beta to vary slowly over time. To capture this in a simple way, let's
now assume that we have access to returns observations for p assets over a fixed number of
2n periods. The first n periods we call the first (or previous) time block, and the second n
periods the second (or current) time block. We then have returns matrices R1, R2 \in \BbbR p\times n

corresponding to the two time blocks, and R = [R1R2] \in \BbbR p\times 2n the full returns matrix over
the full set of 2n observation times.

Define the sample covariance matrices S, S1, S2 as 1
2nRR

T , 1
nR1R

T
1 , and

1
nR2R

T
2 , respec-

tively. Let h, h1, h2 denote the respective (normalized) leading eigenvectors (PCA estimators)
of S, S1, S2. (Of the two choices of eigenvector, we always select the one having nonnegative
inner product with q.)

Instead of a single \beta for the entire observation period, we suppose there are random vectors
\beta 1 and \beta 2 that enter the model during the first and second time blocks, respectively, and are
fixed during their respective blocks. We assume both \beta 1 and \beta 2 satisfy assumptions A1 and
A2 above, and denote by b1 and b2 the corresponding normalized vectors. The vectors \beta 1 and
\beta 2 should not be too dissimilar in the mild sense that (\beta 1, \beta 2) \geq 0.

Definition 2.4. Define the co-dispersion dp(\beta 1, \beta 2) and pointwise correlation \rho p(\beta 1, \beta 2) of
\beta 1 and \beta 2 by

dp(\beta 1, \beta 2) =
1

p

p\sum 
i=1

\biggl( 
\beta 1(i)

\mu p(\beta 1)
 - 1

\biggr) \biggl( 
\beta 2(i)

\mu p(\beta 2)
 - 1

\biggr) 
and

\rho p(\beta 1, \beta 2) =
dp(\beta 1, \beta 2)

dp(\beta 1)dp(\beta 2)
.
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1124 HUBEYB GURDOGAN AND ALEC KERCHEVAL

The Cauchy--Schwarz inequality shows  - 1 \leq \rho p(\beta 1, \beta 2) \leq 1. Furthermore, it is straight-
forward to verify that

(2.14) (b1, b2) - (b1, q)(b2, q) =
dp(\beta 1, \beta 2)\sqrt{} 

1 + dp(\beta 1)2
\sqrt{} 

1 + dp(\beta 2)2
.

and hence dp(\beta 1, \beta 2) and \rho p(\beta 1, \beta 2) have limits d\infty (\beta 1, \beta 2) and \rho \infty (\beta 1, \beta 2) as p\rightarrow \infty .

The motivation for this model is our expectation that estimated betas are not fixed, but
nevertheless recent betas still provide some useful information about current betas. To make
this precise in support of the following theorem, we make the following additional assumption.

A5. (Relation between \beta 1 and \beta 2) Almost surely, (\beta 1, \beta 2) > 0, \mu \infty (\beta 1) = \mu \infty (\beta 2), d\infty (\beta 1) =
d\infty (\beta 2), and limp\rightarrow \infty dp(\beta 1, \beta 2) = d\infty (\beta 1, \beta 2) exist.

Theorem 2.4. Assume \beta 1, \beta 2, R,X,Z satisfy assumptions A1 - A5. Denote by \^hsq and
\^hdq the GPS estimators for R2 and R, respectively, i.e., the current (single) and previous plus
current (double) time blocks. Let h1 and h2 be the PCA estimators for R1 and R2, respectively.

Let Lp =< h1, q > and define a MAPS estimator for the current time block as

(2.15) \^hL =

\tau ph2 + proj
L

(h2)

| | \tau ph2 + proj
L

(h2)| | 
where \tau p =

\psi 2
p  - | | proj

L
(h2)| | 2

1 - \psi 2
p

,

where \psi p is computed from the eigenvalues of the sample covariance matrix corresponding to
the current time block R2. Then, almost surely,

(2.16) lim
p\rightarrow \infty 

\bigl( 
| | \^hL  - b2| |  - | | \^hsq  - b2| | ]

\bigr) 
\leq 0 and lim

p\rightarrow \infty 

\bigl( 
| | \^hL  - b2| |  - | | \^hdq  - b2| | ]

\bigr) 
\leq 0,

and, if 0 < | \rho \infty (\beta 1, \beta 2)| < 1,

(2.17) lim
p\rightarrow \infty 

\bigl( 
| | \^hL  - b2| |  - | | \^hsq  - b2| | 

\bigr) 
< 0 and lim

p\rightarrow \infty 

\bigl( 
| | \^hL  - b2| |  - | | \^hdq  - b2| | 

\bigr) 
< 0.

Theorem 2.4 says that the MAPS estimator obtained by adding the PCA estimator h from
the previous time block as a second anchor point outperforms the GPS estimator asymptoti-
cally, as measured by \ell 2 error, whether the latter is estimated with the most recent time block
R2 or with the full 2n (double) data set. This works when the previous time block carries some
information about the current beta (nonzero correlation). In the case of perfect correlation
\rho \infty (\beta 1, \beta 2) = 1 the two betas are equal, and we then return to the GPS setting where beta is
assumed constant across the entire 2n observations, so no improved performance is expected.

The cost of implementing this ``dynamic MAPS"" estimator is comparable to that of the
GPS estimator, so should generally be preferred when no rank order information is available
for beta.

In this analysis we have chosen to use two historical time blocks of equal length n for the
sake of a definite statement and to illustrate the idea. It is likely that the idea also works
when the time blocks have different lengths, or when there are multiple historical time blocks
in use. Theoretical or experimental analysis could determine rules for making such choices,
but we do not do so here.D
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2.5. Remarks and connections. The theorems above illustrate a general theme of the
MAPS framework: the performance of a shrinkage estimator like GPS can be improved when
additional information can be added in the form of additional anchor points. For Theorem 2.3,
that means a certain amount of prior ordering information about the betas can be converted
to anchor points that are good enough to make a bona fide consistent estimator of b. For
Theorem 2.4, the use of a PCA estimator from a prior interval in time as an additional anchor
point improves the estimator if betas are correlated across time. The general point is that
when there is some prior information about the betas that is independent of the time interval
used for the estimation, the investigator should formulate that information as one or more
anchor points and use the MAPS technique.

This discussion has close connections to Bayesian decision theory (BDT), which makes
use of a prior distribution of a parameter to be estimated. One could view the addition of an
anchor point in the MAPS framework as an adjustment to a prior distribution for beta.

We think it likely that the MAPS approach can be reformulated in BDT terms, although
our results in the current form don't conform to them. We don't formulate the prior informa-
tion in terms of a prior distribution of the parameters. And since our setting is asymptotic as
p\rightarrow \infty , our conclusions are almost sure statements, rather than statements about minimizing
posterior expected loss. However, the structural connections between GPS/MAPS and the
JS estimator mentioned in the introduction provides a link. The JS estimator is a kind of
empirical Bayes estimator; for example, see [11]. Similarly, the GPS/MAPS estimator is an
empirical version of an ``oracle"" estimator---see section 5.

Another connection, especially for Theorem 2.4, is to the setting of machine learning.
Although Theorem 2.4 itself is not about machine learning because there is no training process,
one could imagine the use of prior time intervals as input to a training process that finds
optimal anchor points as a function of the prior data. This is likely to improve on our default
use of the PCA leading eigenvector as an additional anchor point.

3. Tracking error. Our task has been to estimate the covariance matrix of returns for a
large number p of assets but a short time series of n returns observations.

Recall that for the returns model (1.1), under the given assumptions, we have the true
covariance matrix

\Sigma b = p\eta bbT + \delta 2I,

where \eta and \delta are positive constants and b is a unit p-vector, and we are interested in corre-
sponding estimates \^\eta , \^\delta , and h that define an estimator

\Sigma h = p\^\eta hhT + \^\delta 2I.

Our focus on the estimator h and relative neglect of \^\eta and \^\delta are justified by Proposition
1.1, showing that the true variance of the estimated minimum variance portfolio \^w, and the
variance forecast ratio, are asymptotically controlled by h alone through the optimization bias

\scrE (h) = (b, q) - (b, h)(h, q)

1 - (h, q)2
.

The preceding theorems have focused on a particular measure of estimation error for h:
the \ell 2 error (Euclidean distance) | | h  - b| | = 2(1  - (h, b)). By comparison, [14, 15] focus onD

ow
nl

oa
de

d 
08

/3
1/

24
 to

 1
36

.1
52

.2
5.

63
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1126 HUBEYB GURDOGAN AND ALEC KERCHEVAL

the variance forecast ratio of the minimum variance portfolio. This error measure has the
benefit of demonstrating improvement of a quantity of direct interest to practitioners, with
the drawback of focusing on a single type of portfolio. The \ell 2 error is not a familiar financial
quantity but is an ingredient in the optimization bias above, and also in estimating tracking
error, as we describe next.

We turn to a third important measure of covariance estimation quality: the tracking error
for the minimum variance portfolio, which is controlled in part by the \ell 2 error of h. Tracking
error is a term conventionally used in the finance industry as a measure of the distance between
a portfolio and its benchmark. Here, we adopt the same idea to measure the distance between
an estimated minimum variance portfolio and the true portfolio, as follows.

Recall that w denotes the true minimum variance portfolio using \Sigma , and \^w is the minimum
variance portfolio using the estimated covariance matrix \^\Sigma .

Definition 3.1. The (true) tracking error \scrT (h) associated to \^w is defined by

(3.1) \scrT 2(h) = ( \^w  - w)T\Sigma ( \^w  - w).

Definition 3.2. Given the notation above, define the eigenvector bias \scrD (h) associated to a
unit leading eigenvector estimate h as

\scrD (h) =
(h, q)2(1 - (h, b)2)

(1 - (h, q)2)(1 - (b, q)2)
=

(h, q)2| | h - b| | 2

| | h - q| | 2| | b - q| | 2
.

Theorem 3.1. Let h be an estimator of b such that \scrE (h) \rightarrow 0 as p\rightarrow \infty (such as a GPS or
MAPS estimator). Then the tracking error of h is asymptotically (neglecting terms of higher
order in 1/p) given by

(3.2) \scrT 2(h) = \eta \scrE 2(h) +
\delta 2

p
\scrD (h) +

C

p
\scrE (h),

where

C =
2

\xi (1 + d2\infty (\beta ))

\biggl( 
\delta 2 +

\eta 

\^\eta 
\^\delta 2
\biggr) 

and \xi > 0 is a constant depending only on \psi \infty , \mu \infty (\beta ), and d\infty (\beta ).

We consider what this theorem means for various estimators h. For the PCA estimate, it
was already shown in [14] that \scrE (hPCA) is asymptotically bounded below, and hence so is the
tracking error.

On the other hand, \scrE (hGPS) tends to zero as p\rightarrow \infty . In addition [14] shows that

lim sup
p\rightarrow \infty 

p \scrE 2(hGPS) = \infty 

almost surely, while [17] shows

lim sup
p\rightarrow \infty 

p \scrE 2(hGPS)

log log p
<\infty ,

and we conjecture the same is true for the more general estimator hMAPS .D
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This implies the leading terms, asymptotically, are

\scrT 2(hMAPS) \leq \eta \scrE 2(hMAPS) + (\delta 2/p)\scrD (hMAPS).

Note here the estimated parameters \^\eta and \^\delta have dropped out, with the tracking error
asymptotically controlled by the eigenvector estimate h alone.

Theorem 3.1 helps justify our interest in the \ell 2 error results of Theorems 2.3 and 2.4.
Reducing the \ell 2 error | | h - b| | of the h estimate controls the second term \scrD (h) of the asymptotic
estimate for tracking error. We therefore expect to see improved total tracking error when
we are able to make an informed choice of additional anchor points in forming the MAPS
estimator. This is borne out in our numerical experiments described in section 4.

Proof of Theorem 3.1.

Lemma 3.2. There exists \xi > 0, depending only on \psi \infty , \mu \infty (\beta ), and d\infty (\beta ), such that for
any p sufficiently large, and any linear subspace L of \BbbR p that contains q,

| | hL  - q| | 2 > \xi > 0,

where hL is the MAPS estimator determined by L.

The lemma follows from the fact that (hL, q) \leq (hGPS , q) and is proved for the case hGPS

using the definitions and the known limits

(hPCA, q)\infty = (b, q)\infty (hPCA, b)\infty ,(3.3)

(b, q)2\infty =
1

1 + d2\infty (\beta )
\in (0, 1),(3.4)

(hPCA, b)\infty = \psi \infty > 0.(3.5)

From the lemma and (3.4), we may assume without loss of generality that \xi > 0 is an
asymptotic lower bound for both | | hL  - q| | 2 = 1 - (hL, q)

2 and | | b - q| | 2 = 1 - (b, q)2.
Next, we recall it is straightforward to find explicit formulas for the minimum variance

portfolios w and \^w:

(3.6) w =
1
\surd 
p

\rho q  - b

\rho  - (b, q)
, where \rho =

1 + k2

(b, q)
, k2 =

\delta 2

p\eta 
,

and

(3.7) \^w =
1
\surd 
p

\^\rho q  - h

\^\rho  - (h, q)
, where \^\rho =

1 + \^k2

(h, q)
, \^k2 =

\^\delta 2

p\^\eta 
.

We may use these expressions to obtain an explicit formula for the tracking error:

\scrT 2(h) = ( \^w  - w)T\Sigma ( \^w  - w) = ( \^w  - w)T (p\eta bbT + \delta 2I)( \^w  - w)

= p\eta ( \^w  - w, b)2 + \delta 2| | \^w  - w| | 2.

We now estimate the two terms on the right-hand side separately.D
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1128 HUBEYB GURDOGAN AND ALEC KERCHEVAL

(1) For the first term p\eta ( \^w  - w, b)2, it is convenient to introduce the notation

\Gamma =
k2

1 + k2  - (b, q)2
and \^\Gamma =

\^k2

1 + \^k2  - (h, q)2
,

and since

\Gamma \leq k2

\xi 
and \^\Gamma \leq 

\^k2

\xi 

both \Gamma and \^\Gamma are of order 1/p.
A straightforward computation verifies that

(w, b) =
1
\surd 
p
\Gamma (b, q),(3.8)

( \^w, b) =
1
\surd 
p

\Bigl( 
\scrE (h) + \^\Gamma [(b, q) - \scrE (h)]

\Bigr) 
.(3.9)

We then obtain

p( \^w  - w, b)2 = p[( \^w, b) - (w, b)]2(3.10)

= \scrE (h)2 + 2\scrE (h)G+G2,(3.11)

where G = \^\Gamma ((b, q) - \scrE (h)) - \Gamma (b, q).
Since asymptotically (b, q) is bounded below and \scrE (h) \rightarrow 0, the third term G2 is of order

1/p2 and can be dropped. We thus obtain the asymptotic estimate

p( \^w  - w, b)2 \leq \scrE 2 + 2\scrE (h)(\^\Gamma  - \Gamma )(b, q).

Multiplying by \eta and using the bounds on \Gamma , \^\Gamma and the limit of (b, q), we obtain

p\eta ( \^w  - w, b)2 \leq \scrE 2 +
C

p
\scrE (h),

where C is the constant defined in the statement of the theorem.

(2) We now turn to the second term | | \^w  - w| | 2 = | | \^w| | 2 + | | w| | 2  - 2( \^w,w).
Using the definitions of \^w and w and the fact that k2, \^k2 are of order 1/p, after a calculation

we obtain, to lowest order in 1/p,

(3.12) p| | \^w  - w| | 2 = (h, q)2[1 - (h, b)2]

(1 - (h, q)2)(1 - (b, q)2)
+

1 - (h, q)2

1 - (b, q)2
\scrE 2(h).

Since \scrE (h) \rightarrow 0, we may neglect the second term, and putting (1) and (2) together yields

\scrT 2(h) \leq \scrE 2 +
C

p
\scrE (h) + \delta 2

p
\scrD (h).
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4. Simulation experiments. To illustrate the previous theorems and test whether the
MAPS estimators can be successful for realistic finite values of p, we present the results of two
numerical experiments. In section 4.1, we draw two correlated random vectors \beta 1 and \beta 2 in
\BbbR p, p = 500, with a variable correlation that we control. Returns are generated using \beta 1 for a
first block of observations, then using \beta 2 for a second block of equal length. These are used to
test whether the dynamic MAPS estimator of Theorem 2.4 is successful against GPS (which
assumes \beta 1 = \beta 2). In addition, since we know the exact ordering of the beta components,
we can compare results with a MAPS estimator defined with a beta ordered partition as in
Theorem 2.3.

In section 4.2, we turn to the use of historical CAPM betas for stocks in the S\&P500, rather
than simulated betas. This allows us to test a MAPS estimator defined by a partition deter-
mined by the 11 sectors of the familiar Global Industry Classification Standard of MSCI and
S\&P. Under the hypothesis that betas for stocks in the same industry sector tend to have simi-
lar magnitudes, classification by sector represents a potential approximation to a true (but usu-
ally not observable) beta ordered partition. We test this data-driven MAPS estimator against
PCA, GPS, and the consistent MAPS estimator defined with a true beta ordered partition.

These simple experiments are only proof-of-concept examples illustrating the potential for
success. We have not attempted the worthwhile project of systematically studying the possible
choices of history length or sector divisions in order to optimize outcomes in real markets.

The Python code used to run these experiments and create the figures is available at
https://github.com/hugurdog/MAPS NumericalExperiments.

4.1. Simulated betas with correlation. To model the possibility that the true betas may
vary slowly during the time window used for estimation, and as a test for Theorems 2.3 and
2.4, we create a simple two-block simulation model with p = 500 stocks in which the true
betas are held constant with value \beta 1 \in \BbbR p during one block of time, and then shift to a
second but correlated value \beta 2 for a subsequent block of time.

Each block has n = 25 observations, so the total observation window is of size 2n = 50
for each of our p = 500 stocks. The p\times n returns matrix for the first block is denoted R1 and
for the second R2, and

(4.1) Rt = \beta tXt + Zt, t = 1, 2,

whereXt \in \BbbR n is a vector of the n unobserved common factor returns in block t, and Zt \in \BbbR p\times n

is the matrix of specific returns in block t.
We generate the p\times n matrices R1 and R2 from (4.1) by randomly generating \beta ,X, and Z:
\bullet the market returns Xt(j), j = 1, . . . , n, are an iid random sample drawn from a normal

distribution with mean 0 and variance \sigma 2 = 0.16,
\bullet all components of the asset specific returns \{ Zt(i, j), i = 1, . . . , p; j = 1, . . . , n\} are iid

normal with mean 0 and variance \delta 2 = (.5)2, and
\bullet the p-vectors \beta 1 and \beta 2 are defined by drawing \beta , \eta \in \BbbR p independently from a Normal

distribution with mean 1 and variance (.5)2Ip\times p, and setting

\beta 1 = \beta and \beta 2 = \rho \beta +
\sqrt{} 

1 - \rho 2\eta ,

where the correlation \rho ranges through values in \{ 0, 0.3, 0.6, 1.0\} .D
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1130 HUBEYB GURDOGAN AND ALEC KERCHEVAL

With this simulated returns data, we compare performance for the following four choices
of h:

1. the PCA estimator on the double block R = [R1, R2] (PCA),
2. the GPS estimator on the double block R = [R1, R2] (GPS),
3. the dynamic MAPS estimator defined on the double block R = [R1, R2] by (2.15)

(Dynamic MAPS),
4. the MAPS estimator on the single block R2 incorporating knowledge of a beta ordered

partition \scrP as in Theorem 2.3; the partition is constructed by rank ordering the betas
and then grouping them into seven ordered groups of 71, and a small eighth group of
the lowest three (Beta Ordered MAPS).

We report the performance of each of these estimators according to the following two
metrics:

\bullet the \ell 2 error | | b - h| | between the true normalized beta b = \beta 
| \beta | of the current data block

R2 and the estimated unit vector h,
\bullet the tracking error between the true and estimated minimum variance portfolios w and

\^w:

(4.2) \scrT 2( \^w) = ( \^w  - w)T\Sigma ( \^w  - w).

In our double-block context, this tracking error is specified as follows. \Sigma in (4.2) is the
true covariance matrix of the most recent data block R2:

(4.3) \Sigma = \sigma 2\beta 2\beta 2
T + \delta 2I,

which then also determines the true fully invested minimum variance portfolio w. The esti-
mated minimum variance portfolio \^w is determined by the estimated covariance matrix

(4.4) \^\Sigma = \^\sigma 2 \^\beta \^\beta T + \^\delta 2I = (\^\sigma 2| \^\beta | 2)hhT + \^\delta 2I.

For our comparison, and following the lead of [14], we fix the asymptotically correct values

(4.5) \^\sigma 2| \^\beta | 2 = s2p  - l2p and \^\delta 2 =
n

p
l2p

(notation as in (2.7)) across each of the four cases and vary only the estimator h = \^\beta /| \^\beta | as
described above. The motivation for this choice is that in our simulation the parameters \sigma 2

and \delta 2 remain constant across the double time window. Hence the best data-driven estimates
for \^\sigma 2 and \^\delta 2 will be obtained by using s2p and l2p computed from the full double block of data
R. This puts all the methods compared on the same footing and isolates h as the sole variable
in the experiment.

Results of the comparison are displayed below. For each choice of \rho , the experiment was
run 100 times, resulting in 100 \ell 2 error and tracking error values each. These values are
summarized using standard box-and-whisker plots generated in Python using the package
matplotlib.pyplot.boxplot.

Figure 1 shows the squared \ell 2 error | | h - b| | 2 for different estimators h (in the same order,
left to right, as listed above) for the cases \rho = 0, 0.3, 0.6, 1.0. Throughout the range, theD
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(a) \rho = 0. (b) \rho = 0.3.

(c) \rho = 0.6. (d) \rho = 1.

Figure 1. Results of simulation experiments measuring \ell 2 error for different estimators: PCA, GPS,
Dynamic MAPS, and Beta Ordered, and varying correlation \rho between betas in the two different time blocks.
When beta correlation between time blocks is low, dynamic MAPS outperforms GPS. The nonempirical beta-
ordered MAPS outperforms all others.

dynamical MAPS estimator outperforms the other two data-driven estimators, but the beta-
ordered MAPS estimator remains in the lead. The case \rho = 0 could be compared to the case
of a Bayesian estimator where the additional anchor point is providing information only about
the distribution of the components of \beta . As the correlation \rho tends toward one, the GPS and
Dynamic MAPS errors become equal. At \rho = 1, \beta 1 = \beta 2 and the GPS assumption of constant
\beta over the 2n period is satisfied.

Figure 2 displays the scaled tracking error p\scrT 2(h) outcomes across a range of correlation
values \rho (\beta 1, \beta 2). Dynamic MAPS does best among all data-driven methods, and beta ordered
MAPS is significantly better than all others. As before, the Dynamic MAPS lead disappears
as \rho tends to 1, when \beta 1 = \beta 2.

4.2. Simulations with historical betas. In this section we use historical rather than ran-
domly generated betas to test the quality of MAPS estimators defined using a sector partition
and a beta ordered partition. We use 24 historical monthly CAPM betas for each of the
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(a) \rho = 0. (b) \rho = 0.3.

(c) \rho = 0.6. (d) \rho = 1.

Figure 2. Tracking error results of simulation experiments for different estimators PCA, GPS, Dynamic
MAPS, and Beta Ordered. The pointwise correlation \rho is the correlation between betas in the two different time
blocks. Results are similar to the \ell 2 error plots.

p = 488 S\&P500 firms provided by WRDS4 between the dates 01/01/2018 and 11/30/2020.
We denote these betas by \beta 1, . . . , \beta 24 \in \BbbR p.

The WRDS beta suite estimates beta each month from the prior 12 monthly returns.
Therefore in this experiment we set n = 12 months and using these betas simulate 24 different
sets of monthly asset returns Rt \in \BbbR p\times n, each for n = 12 months.

For each t = 1, . . . , 24, we generate the returns matrix Rt according to

(4.6) Rt = \beta tXt + Zt,

where the unobserved market return Xt \in \BbbR n and the asset specific return Zt \in \BbbR p\times n are
generated using the same settings as in the previous section.

For each t we also form partitions \scrP true
t and \scrP sector

t of the beta indices \{ 1, 2, . . . , p\} . \scrP true
t

is a true beta ordered partition with 11 atoms constructed from the true rank ordering of

4Wharton Research Data Services, wrds-www.wharton.upenn.edu.D
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(a) \ell 2 error. (b) tracking error. (c) optimization bias.

Figure 3. Box plots summarizing the distribution of 24 Monte Carlo--estimated expected errors for the
PCA, GPS, Sector Separated, and Beta Ordered estimators (left to right in each figure). The experiment is
conducted over 488 S\&P500 companies. This experiment reveals that the Sector Separated estimator is able
to capture some of the ordering information and therefore outperforms the GPS estimator. The Beta Ordered
estimator performs best.

\beta t. \scrP sector
t is a partition defined by the 11 industry sectors,5 which we adopt as a possible

data-driven proxy for \scrP true
t .

For each t, we then compute the following four estimators of bt = \beta t/| \beta t| :
1. the PCA estimator (PCA),
2. the GPS estimator (GPS),
3. the MAPS estimator defined as in Theorem 2.3 using the partition \scrP sector

t (Sector
Separated),

4. the MAPS estimator defined using \scrP true
t (Beta Ordered)

For each of these four choices of estimator ht, we examine three different measures of
error: the squared \ell 2 error | | ht  - bt| | 2, the scaled squared tracking error p\scrT 2(ht), and the
scaled optimization bias p\scrE 2

p (ht).
Since we are interested in expected outcomes, we repeat the above experiment 100 times

and take the average of the errors as a Monte Carlo estimate of the expectations

\BbbE [| | ht  - bt| | 2], \BbbE [p\scrT 2(ht)], \BbbE [p\scrE 2
p (ht)],

once for each t. We then display box plots in Figure 3 for the resulting distribution of 24
expected errors of each type, corresponding to the 24 historical betas. Outcomes are similar
to the simulated beta experiments, where PCA has the poorest performance, Beta Ordered
MAPS the best, and in between are the GPS and empirical MAPS.

Using sectors to partition the stocks evidently has some value, as the sector separated
MAPS estimator outperforms GPS by a small but significant amount in both \ell 2 and tracking
error. Its success is owed to the tendency for betas of stocks in a common sector to be closer
to each other than to betas in other sectors. The Sector Separated MAPS estimator does not
require any information not easily available to the practitioner and so represents a costless
improvement on the GPS estimation method.

5The 11 sectors of the Global Industry Classification Standard are Information Technology, Health Care,
Financials, Consumer Discretionary, Communication Services, Industrials, Consumer Staples, Energy, Utilities,
Real Estate, and Materials.D
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We also note that further experiments are reported in [17] and [18], in which a dynamic
double-block experiment using the historical betas is also carried out, with similar results.

5. Proofs of the main theorems. The proofs of the main theorems proceed by means of
some intermediate results involving an ``oracle estimator,"" defined in terms of the unobservable
b but equal to the MAPS estimator in the asymptotic limit (Theorem 5.1 below). Several tech-
nical supporting propositions and lemmas are needed; to save space their proofs are collected
in a separate document [18], available online.

5.1. Oracle theorems. A key tool in the proofs is the oracle estimator hL, which is a
version of \^hL but defined in terms of b, our estimation target.

Given a subspace L = Lp of \BbbR p, we define

(5.1) hL =

proj
<h,L>

(b)

| | proj
<h,L>

(b)| | 
.

Here < h,L > denotes the span of h and L, and note that if L = \{ 0\} we get hL = h,
the PCA estimator. A nontrivial example for the selection would be Lp =< q >, which
generates hq, the oracle version of the GPS estimator in [14]. The following theorem says that
asymptotically the oracle estimator (5.1) converges to the MAPS estimator (2.6).

Theorem 5.1. Let the assumptions A1, A2, A3, and A4 hold. Suppose \{ Lp\} be any sequence
of random linear subspaces that is independent of the entries of Z, such that dim(Lp) is a
square root dominated sequence. Then

(5.2) lim
p\rightarrow \infty 

| | \^hL  - hL| | = 0.

The proof of Theorem 5.1 requires the following proposition, proved in [18].

Proposition 5.2. Under the assumptions of Theorem 5.1, let h = hPCA be the PCA esti-
mator, equal to the unit leading eigenvector of the sample covariance matrix. Then, almost
surely,

1. limp\rightarrow \infty 
\bigl( 
(h,projL(h)) - (h, b)2(b,projL(b))

\bigr) 
= 0,

2. limp\rightarrow \infty 
\bigl( 
(b,projL(h)) - (h, b)(b,projL(b)))

\bigr) 
= 0, and

3. limp\rightarrow \infty | | projL(h) - (h, b)projL(b)| | = 0. In particular, \mathrm{p}\mathrm{r}\mathrm{o}\mathrm{j}L(h)
| | \mathrm{p}\mathrm{r}\mathrm{o}\mathrm{j}L(h)| | 

converges asymptoti-

cally to \mathrm{p}\mathrm{r}\mathrm{o}\mathrm{j}L(b)
| | \mathrm{p}\mathrm{r}\mathrm{o}\mathrm{j}L(b)| | 

.

Proof of Theorem 5.1. Recall from (2.6) that

\^hL =

\tau ph+ proj
L

(h)

| | \tau ph+ proj
L

(h)| | 
where \tau p =

\psi 2
p  - | | proj

L
(h)| | 2

1 - \psi 2
p

.

By Lemma 2.1, \psi p has an almost sure limit \psi \infty = (h, b)\infty \in (0, 1), and hence \tau p is bounded
in p almost surely.D
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Let \Omega 1 \subset \Omega be the almost sure set for which the conclusions of Proposition 5.2 hold.
Define the notation

ap(\omega ) = | | \^hLp  - hLp | | 

and

\gamma p =

(h, b) - (b,proj
L

(h))

1 - | | proj
L

(h)| | 2
.

The proof will follow steps 1--4 below:
1. For every \omega \in \Omega 1 and subsequence \{ pk\} \infty k=1 \subset \{ p\} \infty 1 satisfying

lim sup
k\rightarrow \infty 

| | proj
Lpk

(b)| | (\omega ) < 1

we prove

0 < lim inf
k\rightarrow \infty 

\gamma pk(\omega ) \leq lim sup
k\rightarrow \infty 

\gamma pk(\omega ) <\infty 

and

0 < lim inf
k\rightarrow \infty 

\tau pk(\omega ) \leq lim sup
k\rightarrow \infty 

\tau pk(\omega ) <\infty .

2. For every \omega \in \Omega 1 and subsequence \{ pk\} \infty k=1 \subset \{ p\} \infty 1 satisfying

lim sup
k\rightarrow \infty 

| | proj
Lpk

(b)| | (\omega ) < 1

we use step 1 to prove limk\rightarrow \infty apk(w)=0
3. Set \Omega 0 = \{ \omega \in \Omega 

\bigm| \bigm| lim supp\rightarrow \infty | | projLp
(b)| | 2 = 1\} . Fix \omega \in \Omega 0\cap \Omega 1 and prove using step

2 that limp\rightarrow \infty ap(\omega ) = 0
4. Finish the proof by applying step 2 for all \omega \in \Omega c

0 \cap \Omega 1 when \{ pk\} is set to \{ p\} .
Step 1. Since \omega \in \Omega 1 we have the following immediate implications of Proposition 5.2:

(5.3) lim sup
k\rightarrow \infty 

| | proj
Lpk

(h)| | 2 = (h, b)2\infty lim sup
k\rightarrow \infty 

| | proj
Lpk

(b)| | 2,

(5.4) lim sup
k\rightarrow \infty 

(b,proj
Lpk

(h)) = (h, b)\infty lim sup
k\rightarrow \infty 

| | proj
Lpk

(b)| | 2.

Using the assumption lim supk\rightarrow \infty | | projLpk
(b)| | 2 < 1, we update (5.3) and (5.4) as

(5.5) lim sup
k\rightarrow \infty 

| | proj
Lpk

(h)| | 2 < (h, b)2\infty < 1,

lim sup
k\rightarrow \infty 

(b,proj
Lpk

(h)) < (h, b)\infty (5.6)
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1136 HUBEYB GURDOGAN AND ALEC KERCHEVAL

for the given \omega \in \Omega 1. We can use (5.5) on the numerator of \tau pk to show

lim inf
k\rightarrow \infty 

\bigl( 
\psi 2
pk

 - | | proj
Lpk

(h)| | 
\bigr) 
\geq lim inf

k\rightarrow \infty 
\psi 2
pk

 - lim sup
k\rightarrow \infty 

| | proj
Lpk

(h)| | 2

= (h, b)2\infty  - lim sup
k\rightarrow \infty 

| | proj
Lpk

(h)| | 2 > 0.

That together with the fact that the denominator of \tau pk has a limit in (0,\infty ) implies

(5.7) 0 < lim inf
k\rightarrow \infty 

\tau pk(\omega ) \leq lim sup
k\rightarrow \infty 

\tau pk(\omega ) <\infty 

Similarly we can use (5.6) on the numerator of \gamma pk as

(5.8) lim inf
k\rightarrow \infty 

\bigl( 
(h, b) - (b,proj

Lpk

(h))
\bigr) 
\geq (h, b)\infty  - lim sup

k\rightarrow \infty 
(b,proj

Lpk

(h)) > 0.

Also (5.5) can be used on the denominator of \gamma pk as

(5.9) lim inf
k\rightarrow \infty 

1 - | | proj
Lpk

(h)| | 2 > 1 - lim sup
k\rightarrow \infty 

| | proj
Lpk

(h)| | 2 > 0.

Using (5.8) and (5.9) we get

(5.10) 0 < lim inf
k\rightarrow \infty 

\gamma pk(\omega ) \leq lim sup
k\rightarrow \infty 

\gamma pk(\omega ) <\infty 

for the given \omega \in \Omega 1. This completes Step 1.
Step 2. We have the initial observation

(5.11) 1 \geq | | proj
<h,Lpk

>
(b)| | \geq | | proj

<h>
(b)| | = (h, b),

and using that we get

1 \geq lim sup
p\rightarrow 

| | proj
<h,Lpk

>
(b)| | \geq lim inf

p\rightarrow 
| | proj
<h,Lpk

>
(b)| | \geq (h, b)\infty > 0.

Given that, in order to show limk\rightarrow \infty apk(\omega ) = 0, it suffices to show \tau pkh+projLpk
(h) converges

to a scalar multiple of proj<h,Lpk
>(b) since that scalar clears after normalizing the vectors.

To motivate that lets rewrite proj<h,Lpk
>(b) as

proj
<h,Lpk

>
(b) = proj

<h - \mathrm{p}\mathrm{r}\mathrm{o}\mathrm{j}
Lpk

(h),Lpk
>
(b)

= proj
Lpk

(b) +

\left(   h - proj
Lpk

(h)

| | h - proj
Lpk

(h)| | 
, b

\right)   h - proj
Lpk

(h)

| | h - proj
Lpk

(h)| | 

= proj
Lpk

(b) + \gamma pk(h - proj
Lpk

(h))(5.12)

= \gamma pk

\Biggl( 
h+

1

\gamma pk
proj
Lpk

(b) - proj
Lpk

(h)

\Biggr) 
.(5.13)
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We also have

(5.14) \tau pkh+ proj
Lpk

(h) = \tau pk

\Biggl( 
h+

1

\tau pk
proj
Lpk

(h)

\Biggr) 
.

Since we have \tau pk and \gamma pk satisfying (5.7) and (5.10), respectively, we have (5.13) and (5.14)
well defined asymptotically, which is sufficient for our purpose. Hence, from the above ar-
gument it is sufficient to show the convergence of h + 1

\tau pk
projLpk

(h) to h + 1
\gamma pk

projLpk
(b)  - 

projLpk
(h). That is equivalent to showing 1

\tau pk
projLpk

(h) converges to 1
\gamma pk

projLpk
(b) - projLpk

(h).

We can rewrite the associated quantity as

(5.15)

\bigm| \bigm| \bigm| \bigm| \bigm| 1

\tau pk
proj
Lpk

(h) - 

\Biggl( 
1

\gamma pk
proj
Lpk

(b) - proj
Lpk

(h)

\Biggr) \bigm| \bigm| \bigm| \bigm| \bigm| =
\bigm| \bigm| \bigm| \bigm| \bigm| 
\biggl( 
1 +

1

\tau pk

\biggr) 
proj
Lpk

(h) - 1

\gamma pk
proj
Lpk

(b)

\bigm| \bigm| \bigm| \bigm| \bigm| .
Using Proposition 5.2, part 3, in (5.15), it is equivalent to prove | (1+ 1

\tau pk
)(h, b) - 1

\gamma pk
| converges

to 0. We rewrite it as

\bigm| \bigm| \bigm| \bigm| \biggl( 1

\tau pk
+ 1

\biggr) 
(h, b) - 1

\gamma pk

\bigm| \bigm| \bigm| \bigm| = \bigm| \bigm| \bigm| \bigm| 
(h, b)(1 - | | proj

Lpk

(h)| | 2

\psi 2
pk

 - | | proj
Lpk

(h)| | 2
 - 

1 - | | proj
Lpk

(h)| | 2

(h, b) - (proj
Lpk

(h), b)

\bigm| \bigm| \bigm| \bigm| 
= | 1 - | | proj

Lpk

(h)| | 2| 
\bigm| \bigm| \bigm| \bigm| (h, b)

\psi 2
pk

 - | | proj
Lpk

(h)| | 2
 - 1

(h, b) - (proj
Lpk

(h), b)

\bigm| \bigm| \bigm| \bigm| .(5.16)

Using parts 1 and 2 of Proposition 5.2 and the fact that \psi 2
pk

converges to (h, b)2\infty shows that
(5.16) converges to 0 for the given \omega \in \Omega 1. This completes Step 2.

Step 3. Fix \omega \in \Omega 0 \cap \Omega 1. To show that limp\rightarrow \infty ap(\omega ) = 0, it suffices to show that
for any subsequence \{ pk\} \infty k=1 \subset \{ p\} \infty 1 there exists a further subsequence \{ st\} \infty t=1 such that
limt\rightarrow \infty ast(\omega ) = 0. Let \{ pk\} \infty k=1 be a subsequence. We have one of the following cases:

lim sup
k\rightarrow \infty 

| | proj
Lpk

(b)| | (\omega )2 < 1

or

lim sup
k\rightarrow \infty 

| | proj
Lpk

(b)| | (\omega )2 = 1.

If it is strictly less than 1, then we get from Step 2 that limk\rightarrow \infty apk(\omega ) = 0. In that case
we take the further subsequence equal to \{ pk\} .

If it is equal to 1, then we get a further subsequence \{ st\} s.t. limt\rightarrow \infty | | projLst
(b)| | 2 = 1.

Using this and Proposition 5.2 we get

lim
t\rightarrow \infty 

| | proj
Lst

(h)| | 2 = (h, b)2\infty and lim
t\rightarrow \infty 

(b,proj
Lst

(h)) = (h, b)\infty ,
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1138 HUBEYB GURDOGAN AND ALEC KERCHEVAL

which implies limt\rightarrow \infty \tau st(\omega ) = limt\rightarrow \infty \gamma st(\omega ) = 0. Using this on the definition of \^hL and
(5.12) we get

(5.17) lim
t\rightarrow \infty 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \^hLst
 - 

proj
Lst

(h)

| | proj
Lst

(h)| | 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| = 0 and lim
t\rightarrow \infty 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| hLst
 - 

proj
Lst

(b)

| | proj
Lst

(b)| | 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| = 0.

We can now decompose ast = | | \^hLst
 - hLst

| | into familiar components via the triangle inequality
as follows:

ast = | | \^hLst
 - hLst

| | \leq 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \^hLst
 - 

proj
Lst

(h)

| | proj
Lst

(h)| | 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| | +
\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| hLst

 - 
proj
Lst

(b)

| | proj
Lst

(b)| | 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
+

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
proj
Lst

(b)

| | proj
Lst

(b)| | 
 - 

proj
Lst

(h)

| | proj
Lst

(h)| | 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| .
Using (5.17), we know that the first and second terms on the right-hand side converge to 0 for
the given \omega \in \Omega 0\cap \Omega 1. Since we have limt\rightarrow \infty | | projLst

(h)| | 2=(h, b)2\infty and limt\rightarrow \infty | | projLst
(b)| | 2

= 1, proving the third term on the right-hand side converges to 0 is equivalent to proving

lim
t\rightarrow \infty 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| projLst

(h) - (h, b)proj
Lst

(b)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| = 0,

which is true by Proposition 5.2. This completes Step 3.
Step 4. In Step 3 we proved the theorem for every \omega \in \Omega 0 \cap \Omega 1. Replacing \{ pk\} in Step

2 by the whole sequence of indices \{ p\} , we get the theorem for every \omega \in \Omega c
0 \cap \Omega 1. These

together shows that we have

lim
p\rightarrow \infty 

ap(w) = 0 for all \omega \in \Omega 1,

which completes the proof of Theorem 5.1.

5.2. Proof of Theorem 2.2. The proof of the first part of Theorem 2.2 is an immediate
application of Theorem 5.1.

Proof of Theorem 2.2, (2.8). From the definitions of hL and hq, and as long as q \in Lp, we
have

| | hLp  - b| | \leq | | hq  - b| | 

and therefore

| | \^hLp  - b| | \leq | | \^hLp  - hLp | | + | | hLp  - b| | 
\leq | | \^hLp  - hLp | | + | | hq  - b| | 
\leq | | \^hLp  - hLp | | + | | \^hq  - b| | D
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since | | hq  - b| | \leq | | \^hq  - b| | for all p. Applying Theorem 5.1 gives

lim sup | | \^hLp  - b| | \leq lim
p\rightarrow \infty 

| | \^hq  - b| | .

To prove the remainder of Theorem 2.2 we need the following intermediate result concern-
ing uniform random subspaces, proved in [18].

Proposition 5.3. Suppose, for each p, zp is a (possibly random) point in \BbbS p - 1 and \scrH p is a
uniform random subspace of \BbbR p that is independent of zp. Assume the sequence \{ dim\scrH p\} is
square root dominated.

Then

lim
p\rightarrow \infty 

| | proj
\scrH p

(zp)| | 2 = 0 almost surely.

Proof of Theorem 2.2, (2.9) and (2.10). Theorem 5.1 is applicable. Hence, it suffices to
prove the results for the oracle version of the MAPS estimator.

Since the scalars clear after normalization, it suffices to prove the following assertions:

(5.18) lim
p\rightarrow \infty 

| | proj
<h,\scrH >

(b) - proj
<h>

(b)| | 2 = 0

and

(5.19) lim
p\rightarrow \infty 

| | proj
<h,q,\scrH >

(b) - proj
<h,q>

(b)| | 2 = 0.

We first consider (5.18), rewriting the left-hand side as

lim
p\rightarrow \infty 

| | proj
\scrH 

(b) + proj
h - \mathrm{p}\mathrm{r}\mathrm{o}\mathrm{j}

\scrH 
(h)

(b) - proj
<h>

(b)| | 2

\leq | | proj
\scrH 

(b)| | 2 + | | proj
h - \mathrm{p}\mathrm{r}\mathrm{o}\mathrm{j}

\scrH 
(h)

(b) - proj
<h>

(b)| | 2.(5.20)

The first term of (5.20) converges to 0 by setting z = b in Proposition 5.3. Moreover, Propo-
sitions 5.3 and 5.2 imply proj\scrH (h) converges to the origin in the \ell 2 norm. Hence we have
h  - proj\scrH (h) is converging to h in the \ell 2 norm. That implies the second term in (5.20)
converges to 0, which in turn proves (5.18).

Next, rewrite the expression in the assertion (5.19) as

| | proj
\scrH 

(b) + proj
<h - \mathrm{p}\mathrm{r}\mathrm{o}\mathrm{j}

\scrH 
(h),q - \mathrm{p}\mathrm{r}\mathrm{o}\mathrm{j}

\scrH 
(q)>

(b) - proj
<h,q>

(b)| | 

\leq | | proj
\scrH 

(b)| | + | | proj
<h - \mathrm{p}\mathrm{r}\mathrm{o}\mathrm{j}

\scrH 
(h),q - \mathrm{p}\mathrm{r}\mathrm{o}\mathrm{j}

\scrH 
(q)>

(b) - proj
<h,q>

(b)| | .(5.21)

Similarly the first term of (5.21) converges to 0 by Proposition 5.3. Note that Proposition 5.3
also applies when we set z = q, and hence proj\scrH (q) converges to the origin in the \ell 2 norm.
Hence the basis elements of < h - proj\scrH (h), q  - proj\scrH (q) > converge to the basis elements of
< h, q >, which implies the second term of (5.21) converges to 0 as well. That completes the
proof.D
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5.3. Proof of Theorem 2.3. We need the following lemma.

Lemma 5.4. Let \scrP (p) be a sequence of uniform \beta -ordered partitions such that limp\rightarrow \infty | \scrP (p)| 
= \infty . Then for Lp = L(\scrP (p)) we have

(5.22) lim
p\rightarrow \infty 

| | proj
L

(b)| | = 1

almost surely.

Proof. To be more precise about L = L(\scrP ), set \scrP (p) = \{ I1, I2, . . . , Ikp\} and denote the
defining basis of the corresponding subspace Lp = L(\scrP ) by the orthonormal set \{ v1, v2, . . . , vkp\} .

Then

1 - | | proj
L

(b)| | 2 = 1 - lim
p\rightarrow \infty 

kp\sum 
i=1

(b, vi)
2

=

p\sum 
i=1

b2i  - lim
p\rightarrow \infty 

kp\sum 
i=1

(b, vi)
2

= lim
p\rightarrow \infty 

1

| | \beta | | 2

kp\sum 
i=1

\left(  \sum 
j\in Ii

\beta 2j  - 
1

| Ii| 

\left(  \sum 
n\in Ii

\beta n

\right)  2\right)  
= lim

p\rightarrow \infty 

1

| | \beta | | 2

kp\sum 
i=1

\left(  \sum 
j\in Ii

\left(  \beta j  - 1

| Ii| 

\left(  \sum 
n\in Ii

\beta n

\right)  \right)  2\right)  .(5.23)

Now define the random variables ai = maxj\in Ii(\beta j), ci = minj\in Ii(\beta j) for all 1 \leq i \leq kp.
Without loss of generality, ckp \leq akp \leq \cdot \cdot \cdot \leq c1 \leq a1. Since the sequence \{ \scrP (p)\} is uniform,
there exists M > 0 such that

(5.24) max
I\in \scrP (p)

| I| \leq Mp

| \scrP (p)| 
.

Then

lim
p\rightarrow \infty 

1

| | \beta | | 2

kp\sum 
i=1

\left(  \sum 
j\in Ii

\left(  \beta j  - 1

| Ii| 

\left(  \sum 
n\in Ii

\beta n

\right)  \right)  2\right)  \leq lim
p\rightarrow \infty 

1

| | \beta | | 2

kp\sum 
i=1

| Ii| (ai  - ci)
2

\leq lim
p\rightarrow \infty 

Mp
kp

| | \beta | | 2

kp\sum 
i=1

(ai  - ci)
2(5.25)

= lim
p\rightarrow \infty 

M
| | \beta | | 2
p

1

kp
(a1  - ckp)

2.(5.26)

The term a1  - ckp appearing in (5.26) is uniformly bounded since the \beta 's are uniformly

bounded. Also, | | \beta | | 2
p is finite and away from zero asymptotically. Using those together with

the fact that limp\rightarrow \infty kp = \infty we get the limit in (5.26) equal to 0 for any realization of the
random variables \beta . Note that this is stronger than almost sure convergence.D
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Proof of the Theorem 2.3. By an application of Theorem 5.1 it suffices to prove the the-
orem for the oracle version of the MAPS estimator. Now

(5.27) | | b - proj
<h,L>

(b)| | 2 \leq | | b - proj
L

(b)| | 2 = 1 - | | proj
L

(b)| | 2

and note that application of Lemma 5.4 shows that | | projL(b)| | converges to 1 as p tends to
\infty .

5.4. Proof of Theorem 2.4. The proof of Theorem 2.4 requires the following proposition,
from which the first part, (2.16), of the theorem easily follows. The proof of the proposition,
along with the more difficult proof of the strict inequality (2.17), appears in [18].

Recall that h1, h2, and h are the PCA leading eigenvectors of the sample covariance ma-
trices of the returns R1, R2, and R, respectively.

Proposition 5.5. For each p there is a vector \~h in the linear subspace L \subset Rp generated by
h1 and h2 such that limp\rightarrow \infty | | \~h - h| | = 0 almost surely.

Proof of (2.16) of Theorem 2.4. Since dim(Lp) = 2 and Lp = span(h1, q) is independent

of the asset specific portion Z2 of the current block, Theorem 2.1 implies that \^hL converges
to hL almost surely in the \ell 2 norm. Hence it suffices to establish the result for the oracle
versions of the MAPS and the GPS estimators.

Note

(5.28) (hL, b) = | | proj
span(q,h1,h2)

(b)| | ,

(5.29) (hsq, b) = | | proj
span(q,h2)

(b)| | ,

(5.30) (hdq , b) = | | proj
span(q,h)

(b)| | .

Using Proposition 5.5 we know there exist \~h \in span(h1, h2) such that \~h converges to h in l2
almost surely. Since span(q, \~h) \subset span(q, h1, h2),

| | proj
span(q,h1,h2)

(b)| | \geq | | proj
span(q,\~h)

(b)| | .

Taking the limits of both sides we get

(5.31) lim
p\rightarrow \infty 

(hL, b) = lim
p\rightarrow \infty 

| | proj
span(q,h1,h2)

(b)| | \geq lim
p\rightarrow \infty 

| | proj
span(q,h)

(b)| | = lim
p\rightarrow \infty 

(hdq , b).

Similarly, since span(q, h2) \subset span(q, h1, h2),

(5.32) lim
p\rightarrow \infty 

(hL, b) = lim
p\rightarrow \infty 

| | proj
span(q,h1,h2)

(b)| | \geq lim
p\rightarrow \infty 

| | proj
span(q,h2)

(b)| | = lim
p\rightarrow \infty 

(hsq, b).

Inequalities (5.31) and (5.32) complete the proof.D
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6. Open questions. The MAPS approach to estimation of eigenvectors in a factor model
setting is flexible because it allows for a general way to inject additional information, in
the form of additional anchor points, to improve the estimate. Yet in this paper we have
focused on a very simple setting in order to highlight the ideas: a one-factor model with
homogeneous specific risk. Moreover, our error measures related to portfolio optimization---
tracking error and variance forecast ratio---have focused on the performance of the minimum
variance portfolio (motivated by [14]).

Here are a few directions for ongoing and future research.
\bullet How effective can MAPS estimators be in the context of multifactor models, and with
variable specific risk? In that setting what are more general connections between \ell 2
error of betas and tracking error of optimal portfolios?

\bullet What is the general relationship between optimal MAPS shrinkage targets and the
linear constraints in a portfolio optimization problem?

\bullet What appropriate systematic empirical tests would be most useful in evaluating MAPS
for practical implementation?

\bullet The MAPS approach is general and does not depend on the specific choices of anchor
points analyzed here. Are there other useful sets of anchor points, for example possibly
excluding the vector q? What other sources of observable information in the market
translate into useful anchor points for a successful MAPS estimation of beta? A simple
extension of Theorem 2.4 would involve the use of multiple past time blocks to create
multiple anchor points, for example.

\bullet The experiments of section 4.2 involving historical betas and partitions defined by
industry sectors had the advantage that sectors define an a priori partition that doesn't
require unobservable information. This is only one way that a \beta -ordered partition
might be approximated. Another possibility could be to use historical volatilities to
form a rank ordering and subsequent partition and anchor points. However, since
volatilities are correlated with historical betas, adding volatility anchor points and
then computing \ell 2 error against historical betas would be an unfair test. Instead, a
different experiment could be designed using some out-of-sample measure of success
in place of the \ell 2 error.

\bullet The selection of a shrinkage target from observable data may be suited to a machine
learning approach to covariance estimation. One or more anchor points could be the
output of a trained neural network that could in principle be fed with a much larger
universe of observable data than simply the history of returns. This could potentially
take the eigenvector shrinkage approach into a much wider realm of applicability.

REFERENCES

[1] R. Almgren and N. Chriss, Optimal portfolios from ordering information, J. Risk, 9 (2006), pp. 1--47.
[2] P. J. Bickel and E. Levina, Covariance regularization by thresholding, Ann. Statist., 36 (2008),

pp. 2577--2604.
[3] G. Chamberlain and M. Rothschild, Arbitrage, factor structure, and mean-variance analysis on large

asset markets, Econometrica, 51 (1983), pp. 1281--1304.
[4] R. Clarke, H. De Silva, and S. Thorley, Minimum-variance portfolio composition, J. Portfolio

Management, 2 (2011), pp. 31--45.

D
ow

nl
oa

de
d 

08
/3

1/
24

 to
 1

36
.1

52
.2

5.
63

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MULTIPLE ANCHOR POINT SHRINKAGE 1143

[5] G. Connor and R. A. Korajczyk, Performance measurement with the arbitrage pricing theory: A new
framework for analysis, J. Financial Economics, 15 (1986), pp. 373--394.

[6] G. Connor and R. A. Korajczyk, Risk and return in equilibrium APT: Application of a new test
methodology, J. Financial Economics, 21 (1988), pp. 255--289.

[7] B. Efron and C. Morris, Data analysis using Stein's estimator and its generalizations, J. Amer. Statist.
Assoc., 70 (1975), pp. 311--319.

[8] N. E. El Karoui, Spectrum estimation for large dimensional covariance matrices using random matrix
theory, Ann. Statist., 36 (2008), pp. 2757--2790.

[9] J. Fan, Y. Fan, and J. Lv, High dimensional covariance matrix estimation using a factor model, J.
Econometrics, 147 (2008), pp. 186--197.

[10] J. Fan, Y. Liao, and M. Mincheva, Large covariance estimation by thresholding principal orthogonal
complements, J. Roy. Stat. Soc. Ser. B Stat. Methodol., 75 (2013), pp. 603--680.

[11] D. Fourdrinier, W. Strawderman, and M. Wells, Shrinkage Estimation, Springer, New York, 2018.
[12] P. A. Frost and J. E. Savarino, An empirical Bayes approach to efficient portfolio selection, J. Finan-

cial Quantitative Analysis, 21 (1986), pp. 293--305.
[13] L. Goldberg and A. Kercheval, James Stein for Eigenvectors, preprint, 2022.
[14] L. Goldberg, A. Papanicolaou, and A. Shkolnik, The dispersion bias, SIAM J. Financial Math., 13

(2022), pp. 521--550.
[15] L. R. Goldberg, A. Papanicolaou, A. Shkolnik, and S. Ulucam, Better betas, J. Portfolio Man-

agement, 47 (2020), pp. 119--136.
[16] M. Gruber, Improving Efficiency by Shrinkage, CRC Press, Boca Raton, FL, 1998.
[17] H. Gurdogan, Eigenvector Shrinkage for Estimating Covariance Matrices, Ph.D. thesis, Florida State

University, 2021.
[18] H. Gurdogan and A. Kercheval, Multi Anchor Point Shrinkage for the Sample Covariance Matrix

(extended version), arXiv 2109.00148, 2021.
[19] P. Hall, J. S. Marron, and A. Neeman, Geometric representation of high dimension, low sample size

data, J. R. Stat. Soc. Ser. B Stat. Methodol., 67 (2005), pp. 427--444.
[20] W. James and C. Stein, Estimation with quadratic loss, in Proceedings of the 4th Berkeley Symposium

on Mathematical Statistics and Probability, 1961, pp. 361--379.
[21] T. L. Lai and H. Xing, Statistical Models and Methods for Financial Markets, Springer, New York,

2008.
[22] O. Ledoit and M. Wolf, Improved estimation of the covariance matrix of stock returns with an appli-

cation to portfolio selection, J. Empirical Finance, 10 (2003), pp. 603--621.
[23] O. Ledoit and M. Wolf, Honey, I shrunk the sample covariance matrix, J. Portfolio Management, 30

(2004), pp. 110--119.
[24] O. Ledoit and M. Wolf, Nonlinear shrinkage of the covariance matrix for portfolio selection: Markowitz

meets Goldilocks, Rev. Financial Studies, 30 (2017), pp. 4349--4388.
[25] H. Markowitz, Portfolio selection, J. Finance, 7 (1952), pp. 77--91.
[26] B. Rosenberg, Extra-market components of covariance in security returns, J. Financial Quantitative

Analysis, 9 (1974), pp. 263--274.
[27] S. A. Ross, The arbitrage theory of capital asset pricing, J. Econom. Theory, 13 (1976), pp. 341--360.
[28] W. Sharpe, A simplified model for portfolio analysis, Management Sci., 9 (1963), pp. 277--293.
[29] A. Shkolnik, James-Stein Estimation of the First Principal Component, Stat, Wiley Online Library,

https://doi.org/10.1002/sta4.419, 2021.
[30] O. A. Vasicek, A note on using cross-sectional information in Bayesian estimation of security betas, J.

Finance, 28 (1973), pp. 1233--1239.
[31] W. Wang and J. Fan, Asymptotics of empirical eigenstructure for high dimensional spiked covariance,

Ann. Statist., 45 (2017), pp. 1342--1374.

D
ow

nl
oa

de
d 

08
/3

1/
24

 to
 1

36
.1

52
.2

5.
63

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1002/sta4.419

	Introduction
	Mathematical setting and background
	Our contributions

	Main theorems
	Assumptions and definitions
	The MAPS estimator with random extra anchor points
	The MAPS estimator with rank order information about the entries of beta
	A data-driven dynamic MAPS estimator
	Remarks and connections

	Tracking error
	Simulation experiments
	Simulated betas with correlation
	Simulations with historical betas

	Proofs of the main theorems
	Oracle theorems
	Proof of Theorem 2.2
	Proof of Theorem 2.3
	Proof of Theorem 2.4

	Open questions

