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Abstract 

Adaptive beamformers often rely on estimates of the 
interference covariance structure. When  minimal data 
is  used in estimating the unknown covariance matrix) 
performance may be improved by modifging the eigen- 
values of the sample covariance matrix. The orthogo- 
nally invariant covariance estimators proposed b y  Dey 
and Srinivasan [l] and a constant risk, minimax esti- 
mator are applied to  adaptive beamforming by consid- 
ering the signal-to-interference ratio (SIR)  loss factor 
of Reed, Mallett, and Brennan [2]) where the average 
SIR loss i s  seen to decrease, and, to adaptive detection 
by considering the adaptive detectors of Kelly [3] and 
Robey et. al. [4] where detection performance is seen 
to improve. 

1 Introduction 

Adaptive beamforming algorithms rely on estimates 
of the interference covariance structure to provide im- 
proved detection and estimation performance over con- 
ventional beamforming. The data used to estimate 
the unknown interference covariance structure is com- 
monly called auxiliary data. When minimal auxiliary 
data is used, the variance in the estimates severely de- 
grades performance-potentially providing worse per- 
formance than conventional beamforming. Reed, Mal- 
let, and Brennan [2] indicate that, for complex Gaus- 
sian data vectors, 2n samples of auxiliary data in a 
maximum likelihood estimate of the n-by-n interfer- 
ence covariance matrix E are required to achieve less 
than a 3 dB average loss in the beam output signal-to- 
interference ratio (SIR). Kelly [3] and Robey et. al. [4] 

‘This work was sponsored by the Office of Naval Research. 
Approved for public release; distribution is unlimited. 

Dipak K. Dey 

Department of Statistics 
University of Connecticut 

Storrs, CT 062643120 
(203) 486-4192 

have illustrated the improvement attainable in array 
signal detection performance by increasing the amount 
of auxiliary data. For large n, adequate performance 
could require so much auxiliary data that the inter- 
ference may become non-stationary. As illustrated by 
Gray et. al. [5] and Fuhrmann [6] for toeplitz covari- 
ance matrices, adaptive array performance improve- 
ment may also be obtained by assuming that E has a 
specific structure and exploiting this structure to pro- 
vide improved covariance estimation. 

When there is not enough data to adequately esti- 
mate E, or, when no specific covariance structure may 
be assumed, the interference covariance matrix esti- 
mate may still be improved by employing a minimax 
estimator or by applying shrinkage-expansion (S-E) 
techniques to the eigenvalues of the sample covariance 
matrix. It is known that the eigenvalues of the sample 
covariance matrix, a scale of a complex Wishart dis- 
tributed matrix, are biased away from the true eigen- 
values. To a first order approximation, the mean of 
the larger (smaller) sample eigenvalues is greater (less) 
than the corresponding true eigenvalues. As shown by 
Dey and Srinivasan [l], applying S-E techniques that 
shift the sample eigenvalues toward their geometric 
mean can result in covariance estimators that dom- 
inate the sample covariance matrix in terms of risk 
under Stein’s loss function. The form of the orthog- 
onally invariant, scale invariant, minimax covariance 
estimators of [I], and a discussion of how to choose 
two constants associated with the S-E term, is found 
in section 2. 

The utility of these improved covariance estimators 
in adaptive beamforming and detection is explored in 
sections 3 and 4, respectively, by considering h d ,  
Mallet, and Brennan’s SIR loss factor and the adaptive 
detectors of Kelly and Robey. 
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2 Improved Covariance Estimation 

In many situations in adaptive beamforming and 
detection, it is reasonable to assume that the observed 
data follow a zero mean, multivariate, complex Gaus- 
sian distribution, 

for i = 1,. . . , I C ,  where the notation x N CN, (p ,  E) in- 
dicates that the pby-1 vector x is complex Gaussian 
distributed with mean p and covariance E. The maxi- 
mum likelihood estimate of I: is the sample covariance 
matrix, 

. k  

where the superscript represents the complex con- 
jugate and transpose operation. Let the eigenvalue- 
eigenvector decomposition of the sample covariance 
matrix be 

2, = M L M ~ ,  (3) 

where M is the orthogonal matrix of the sample eigen- 
vectors and L is a diagonal matrix of the sample eigen- 
values (11 > 12 > ... > I p ) .  

The orthogonally invariant, scale invariant covari- 
ance estimators of Dey and Srinivasan [l] may be de- 
scribed by the form 

2 = M4 (L) MX, (4) 

where the function 4 operates on the diagonal elements 
of L according to 

cl i 
b + u  

+i (L) = U i l i  - -log (+) , (5) 

for i = 1,.  . . , p .  Here, I =  (/m is the geometric 
mean of the sample eigenvalues and 

P 2 .=c[log(+)] . 
i= l  

Four covariance estimators of this form will be consid- 
ered: (i) the maximum likelihood estimator (MLE) 
of E (ai = 1 and c = 0), (ii) the MLE with S-E 
(ai = 1 and c > 0), (iii) a minimax estimator, say k,, 
with constant risk with respect to X (ui = k+p:l-2i 

and c = 0), and (iv) a minimax estimator with S-E 
k (ai = k+p+l -2 i  and c > 0). 

Dey and Srinivasan showed that the risk under 
Stein’s loss function’, 

(7) 

is reduced for the S-E estimators of equation (5) when 

and 

h > c, (9) 

where 

k when a2 = 1 
k . (10) k + p - 1 when ai = k+p+l-2 i  

In general, the constant c may be replaced by any non- 
decreasing function of U that satisfies equation (8). 
It should be noted that the work of Dey and Srini- 
vasan [l] was strictly for estimating the covariances 
of real multivariate Gaussian random vectors. Their 
proofs were based on algebraic arguments applied to 
the eigenvalues. Thus, their results may be directly ex- 
tended to the complex Gaussian case where the eigen- 
values are also real due to the complex conjugate sym- 
metry of covariance matrices. 

The analysis of Dey and Srinivasan [l] does not pre- 
clude a risk reduction for values of b and c not satisfy- 
ing (8) and (9), and, unfortunately, does not provide a 
method for choosing b and c to minimize the risk. The 
risk obtained by choosing b = ybbmin and c = ycc,,,, 
where c,,, = and bmin = ck,,, is shown as 
a function of yb and yc, respectively, in figures 1 and 
2 for p = 8, k = 16, and I: = I,, the p dimensional 
identity matrix. In figure 1, c = Cmax, and, in figure 2, 
b = bmin. Observe that, as expected, the risk for the 
S-E methods tends toward that for the non-S-E when 
either b ---f 00 or c -+ 0. The values of yb and yc that 
minimize the risk are functions of E, and thus may not 
be chosen without prior knowledge. However, over a 
wide variety of X and k, the trends observed indicated 
that choosing yc = 4 for the MLE S-E estimator and 
yc = 3 for the minimax S-E estimator resulted in a risk 
reduction. The amount of reduction diminishes, po- 
tentially becoming negative, as the eigenvalue spread 
increases, a result consistent with that reported by Dey 
and Srinivasan [7]. As seen in figure 1, scaling b toward 
zero reduces the risk, however only slightly. Note that 

lThe use of Stein’s loss function may be justified through 
recognizing that the resulting risk function contains terms found 
in the entropy function for 9,. Thus, reducing the risk may 
reduce the entropy associated with estimating E. 

5 k  
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the minimax estimator with S-E obtains the smallest 
risk. Although some robustness has been observed for 
varying E, p ,  and k, blind use of these values for 
and T~ may result in performance deterioration. Fur- 
ther research is required to provide rules for choosing 
values of T b  and -yc that yield adequate performance 
for diverse covariance structures. 

3 Adaptive Beamforming Performance 

The primary goal of adaptive beamforming is to 
maximize the signal-tc-interference ratio  at the beam 
output subject to a constraint forcing signals from a 
specified direction to be distortionless. When the in- 
terference covariance matrix (E) is perfectly known, 
the maximum beam output SIR is achieved by using 
the well known minimum variance distortionless re- 
sponse beamforming weight vector. However, when E 
is estimated by 2, a loss is incurred. Conditioned on 
2, the achieved SIR has the form 

s = P S m a x  (11) 
where smax is the maximum achievable SIR, 

( dH 2 - 'd) 

( dH 2 - E 2 - d) ( dH E - Id) 

is the SIR loss factor, and d represents an array steer- 
ing vector. Reed, Mallett, and Brennan [2] found that 
p followed a beta probability distribution when the 
sample covariance matrix of complex Gaussian data 
was used (2 = Eo) irrespective of the structure of E. 

Following Fuhrmann [6], the SIR loss factor will be 
used to determine the potential improvement in adap- 
tive beamforming due to improved estimation of the 
interference covariance matrix. Histograms of p for 
the four covariance estimators described in section 2 
are found in figure 3 for p = 8 sensors equi-spaced in 
a line array at the design frequency, k = 16 samples of 
auxiliary data, a broadside look direction (d = $), 
and spatially white noise (E = I,). Note that the his- 
togram for p with the sample covariance matrix esti- 
mator (MLE) closely follows the predicted beta density 
function and that the other covariance estimators all 
show more mass at higher values of p, thus, indicating 
improved adaptive beamforming performance. The ef- 
fect of these estimators on angle of arrival estimation 
(e.g., bias and variance) has not been determined. 

The expected value of p is used as a performance 
measure to evaluate the adaptive beamforming perfor- 
mance as the amount of auxiliary data or the covari- 
ance structure varies. In figure 4 it is seen that less 

P =  (12) 

than a one dB loss in the average SIR may be obtained 
for auxiliary data sizes k 2 12 and k 2 15, respectively, 
for the minimax S-E and MLE S-E covariance estima- 
tors and for k 2 20 for the minimax estimator. The 
MLE estimator requires k 2 34 to achieve the same 
performance, nearly three times that of the minimax 
S-E estimator. The amount of improvement due to the 
S-E techniques diminishes as the amount of auxiliary 
data increases. 

In figure 5, E [p] is shown as a function of the sen- 
sor level interference-to-noise power ratio (INR), so, 
where = sododr + I,, and do is the steering vector 
for an interfering signal at 5 degrees from broadside to 
the array. As the interference power increases, the im- 
provement of the S-E estimators diminishes, a result 
consistent with the results of section 2 where risk im- 
provement decreased as condition number increased. 
The minimax estimator with S-E actually provided 
worse performance than that for the non-S-E method 
at the higher INR, exhibiting the need for more ap- 
propriate choices for the b and c constants used in the 
eigenvalue modification. 

4 Adaptive Detection Performance 

Both Kelly [3] and Robey et. al. [4] have proposed 
constant false alarm rate adaptive detectors. Their hy- 
pothesis test assumed that auxiliary data was available 
to estimate C and that the data vector x was to be 
tested for the presence of a deterministic signal with 
unknown complex amplitude. This results in assuming 
that 

x N CN, (Bd, E ) ,  (13) 

where d is the array steering vector pointing in the 
direction of arrival of the signal and 6' is the unknown 
complex signal amplitude. Kelly's generalized likeli- 
hood ratio (GLR) test has the detection statistic 

(14) I I TGLR = 
(dH2-ld) (1 + ~ ~ 9 - l ~ )  ' 

Robey's adaptive matched filter (AMF) has the detec- 
tion statistic 

The probability of detection as a function of the 
SIR (s = 10l2 dHE-'d) for Kelly's GLRT and Robey's 
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AMF are found, respectively, in figures 6 and 7 for de- 
tectors formed from the covariance estimators of sec- 
tion 2 for a false alarm probability of PFA = lov2, 
p = 8 Sensors in the same configuration as section 3, 
k = 16, and = I,. The performance of a GLR detec- 
tor that has knowledge of the interference covariance 
matrix (but not the complex signal amplitude), known 
as the clairvoyant detector, is also depicted. Observe 
that the detectors based on the minimax and S-E co- 
variance estimators show improved performance over 
the one based on the sample covariance matrix. The 
improvement for Fbbey’s AMF detector was slightly 
greater than that for Kelly’s GLR detector. 

It is important to note that the only detectors hav- 
ing a constant false alarm rate are those using just the 
sample covariance matrix estimator. The effect of the 
minimax covariance estimator and the S-E estimators 
on the false alarm performance for varying I: has not 
been evaluated. 

5 Conclusions 

Adaptive beamforming and detection techniques 
rely on estimates of the unknown interference covari- 
ance matrix to provide improved performance over 
conventional methods. When minimal auxiliary data 
is used in the estimation, the variability of the covari- 
ance estimate can substantially degrade performance. 
It has been shown that the adaptive beamforming and 
detection performance loss due to estimation of an un- 
structured covariance matrix may be reduced by mod- 
ifying the eigenvalues of the sample covariance ma- 
trix. The performance improvement diminishes as the 
amount of auxiliary data used to estimate the covari- 
ance matrix increases, or, as the eigenvalue spread of 
I: increases. 

Several issues remain unresolved. The bounds on 
the b and c constants in the eigenvalue S-E techniques 
that guarantee risk reduction are not tight. Meth- 
ods for choosing b and c to minimize the risk for a 
wide range of covariances are needed. The effects of 
the S-E and minimax estimators on beamforming ap- 
plications such as signal waveform or direction of ar- 
rival estimation need to be explored. The application 
of the improved eigenvalue estimation techniques to 
adaptive detection can not be endorsed unless constant 
false alarm rate detectors are not imperative. Alter- 
natively, if the false alarm probability of the detectors 
utilizing the eigenvalue modification techniques can be 
upper bounded over all possible covariances, improved 
detection performance may then be obtainable with 
thresholds that do not change with I:. 
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Figure 1: Risk as a function of Yb with c = cmaz. 
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Figure 2: Risk as a function of +yc with b = bmin. 
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Figure 5: E[p] as a function of interference-to-noise 
ratio. 
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Figure 3: Normalized histogram for SIR loss factor. 
Numbers in parentheses are the sample mean values* 
Dashed line is the PDF for p when the MLE for is 
used, with mean value E [p] = 0.5882. 

Figure 6: Probability of detection for Kelly's GLRT 
detector and the clairvoyant detector. 

Figure 4: E [p] as a function of the amount of auxiliary 
data. 

Figure 7: Probability of detection for Robey's AMF 
detector and the clairvoyant detector. 
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