Weight Matrix Evolution during MiniAlexNet training

Presenter: Doyoon Kim, Enoch Yiu
UC Berkeley

2nd May, 2025

Doyoon Kim, Enoch Yiu Weight Matrix Evolution during Mini 2nd May, 2025



Background

According to Martin&Mahoney, Regularization =~ Generalization
So that if in order for the deep learning model to perform well on
unseen data(test data), it should be regularized well.

To prevent being overfitted to training data, the weight matrices of the
model should be ‘simple’.

Without overfitting With overfitting
y L ® y Ly A ©
X X

Doyoon Kim, Enoch Yiu

Weight Matrix Evolution during Mini

2nd May, 2025



Background

There are two kinds of regularization: explicit vs. implicit
e explicit regularization:

e Dropout: randomly zeroes a fraction of activations during training
e Weight norm constraints, e.g.

o Lasso (L; penalty):
X
min D L(f (@i w), yi) + M[w]|x
i—1

e implicit regularization:
Neural network’s training dynamics drive weight matrices toward a
“simple” state

How can we “check” that the matrix is getting simpler?
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Background

Marchenko—Pastur (MP) Law: For a random matrix W eP*" with
iid entries of variance o2, the eigenvalue density of %WWT converges to

pup(A) = ﬁ\/(h —“NA=A0), AL =0*(1+ve)? c=2

The interval [A_, A;] is the noise bulk; eigenvalues outside are spikes
(signal).
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This growth in spike count signals that the weight matrix develops a
simpler, more low-rank “signal” component.




Questions

o If the weight matrix follows MP law, can we reconstruct the matrix
with a few spikes(factors)?

e Is it possible to shrink Eigenvectors of covariance matrices using
JSE to improve regularization?

o If it’s possible, where should we shrink it?
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Model Arch

Used the same architecture used in Martin&Marhoney, which is
miniAlexnet, simplified version of alexnet.

It has 2 CNN layers, MaxPooling layer with 3 Fully Connected layers,
which doesn’t include explicit regularization.
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Dataset

We used CIFAR10 dataset to train minialexnet.
The data consists of 60000 32x32 colour images in 10 classes, with
50000 training images and 10000 test images.

airplane %.V,\ » ..=é.

automobile EH.E“H. A

bird =' ﬂ. .“
IIE

cat

deer HHI.I,ﬁﬂﬂﬂ
dog 9 1e ) &‘l
fog [ M i N L
horse HIEH”IEHEE
ship [ ol s I

truck thIEEiHII

Doyoon Kim, Enoch Yiu Weight Matrix Evolution during Mini 2nd May, 2025



Reconstruction

Q. If the weight matrix follows MP law, can we reconstruct the matrix
with a few spikes(factors)?

A. We can approximate it, but not perfect.

For FC1 (Wh), FC2 (W3), and FC3 (W3)

W; = USVT = Upr Sxk Vitur + Z,
k

WZ(]C) = Up,k Ek,k ng = ZO’Z‘ U; UiT,
i=1

Ace (m (k) = #correct predictions

#test samples
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Reconstruction

Fixed FC2, FC3 matrices and varied k in FC1 weight matrix(4096x384).

As we train the model, the number of factors k needed to approximate
full rank decreased.

Accuracy vs Rank (fc1)

Normalized uracy v Rank (fc1]
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Reconstruction

Similarly for FC2 layer(384x192),
As we train the model, the number of factors k needed to approximate
full rank decreased.

Accuracy vs Rank (fc2) Normalized uracy v Rank (fc2)
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James—Stein Shrinkage for SVD Reconstruction

Q. Is it possible to shrink Eigenvectors of covariance matrices using
JSE to improve regularization?

A. No. If we shrink it toward the mean.
Shrink each eigenvectors towards its mean

1
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James—Stein Shrinkage for SVD Reconstruction

(a) Vector-only shrinkage:

o~

erc(k) = Uys E1:k,1:1€ V,j;k

(b) Full shrinkage of singular values:

quu(k) = UJS 2JS V:,J;:k

where

1 1
SP=-%% V=]-125?=]-1n¥? &=5V=_—(2*-m?])

n n

= diag(y/0? — n1v?)

NI
I
[N

Y5 =(n®)2 = (£ —nv?l)

Doyoon Kim, Enoch Yiu Weight Matrix Evolution during Mini 2nd May, 2025



James—Stein Shrinkage for SVD Reconstruction

No dramatic increase in performance no matter what k is.

Reconstruction Comparison at Epoch 100 — fc2
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James—Stein Shrinkage for SVD Reconstruction

Zooming in, there are some factor numbers that JS shrinkage works
better, but more like coincidence.

Reconstruction Comparison at Epoch 100 — fc2
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James—Stein Shrinkage for SVD Reconstruction

We need better shrinkage target than grand mean point.
For that, we checked the behavior of leading eigenvector upon epoch.
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Geometric PCA Projections

Let z; €P be the leading eigenvector at epoch i, ||z;|| = 1.
Define the projection basis matrix A by:

[b H%H] erx?, for 1D GPCA (tangent line);
A=

[b t1 tg] eP*3 for 2D GPCA (tangent plane).

Then in both cases:

Pz;
_ T A\\-14T & _ i p—1
P=AA"A) A", Pl €S
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RSS and Fitting Score

L
Residual Sum of Squares (RSS) = Zdz (a:z,ﬁzz) (wi, T € Spfl),
i=1

where d(-,-) is the geodesic distance on the sphere.

L L

Mixed Variance = Z d*(zs,3:) + Z d* (2, 1)
i=1 i=1

RSS variance on SP—1

where 1 is the Fréchet mean of {z;}, i.e. the point on SP~! that

L

- i d?(z;, p).
u argpé%gll - (IBz,p)

Doyoon Kim, Enoch Yiu Weight Matrix Evolution during Mini 2nd May, 2025



RSS and Fitting Score

RSS
Fitti =R =1 - 1
itting Score R Mixed Variance €0.1],

measuring the proportion of total dispersion explained by the
projection.
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2D GPCA fitting example

With proper learning rate(when weight doesn’t converge within 100
epochs), leading eigen vector tend to follow geodesics
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Figure 1: FCI results
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2D GPCA fitting example
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Figure 2: FC2 results
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Choosing start of trajectory

The trajectory of leading eigenvector stabilizes after few epochs.
The first few vectors have high residuals.

Truncating those leads to lower RSS and higher fitting score.
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Choosing start of tr

However, the optimal “start” of the trajectory depends on your
hyperparameters.

To choose it automatically, monitor each epoch’s weight-matrix
spectrum using Marchenko—Pastur law.

The first epoch at which a clear outlier (spike) appears in the spectrum
is then taken as the beginning of your trajectory.
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Choosing start of trajectory

F1 Spectrum at Epoch 2 FC1 Spectrum at Epach 3
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Multiple seed experiments

Trained model with 20 different seeds and projected 3-100 epoch points
into S1, S2 sphere.

Recall: RSS of Random Walk was about 200, Fitting score was about
0.55

fc2.csv - S1_fit Comparison fc2.csv - S1_RSS Comparison

S1_RSS
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Multiple seed experiments

fc2.csv - S2_fit Comparison fc2.csv - S2_RSS Comparison
1.00 2.00
0.98 é 175
0.96
8 150
094 3
s 125
£ 092 ﬁ
o <100
0.90 v
075
088 o
°
050
0.86
o
025
084
batch64 batchs batch64 batchs

experiment experiment




seed experiments

fc2.csv - S1_fit Comparison fc2.csv - S1_RSS Comparison
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seed experiments
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Multiple geodesic during training

There were some cases that epochs follows three different geodesics.
After 18, 48 epochs, the projected eigenvector moves abruptly.
And has big resiual magnitude at that point.
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Multiple geodesic during training

This might be due to the leading eigenvalue crossing.

That the leading eigenvalue, vector changes.

This phenomena sometimes happened when the learning rate(step size)
is big.
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Multiple geodesic during training

Starting here

Loss
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n Studies

To understand how eigenvector trajectories react under perturbations,
we compare:

e Data shift at epoch 50: Swap to a disjoint set of classes
mid-training.
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Varying training data after 50 epochs

For first 50 epochs, train the model using the airplane, automobile,
bird, cat and deer images.

After 50 epochs, train the model with dog, frog, horse, ship and truck
images.

Will the leading eigenvector’s trajectory follow the geodesic still?
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Varying training data aft
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* 50 epochs

Direction changes during 51 53 epochs, but after that, it goes to the

similar direction as before.

Still, leading eigenvectors are on the geodesic line.
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1g training data af

Since the residual near epoch 50 is rather small, we can say that even if
we change training data, it still follows the geodesic line.
So whatever the data is, the weight matrix tend to follow geodesic line.

Residual Magnitude vs Epoch (1D GPCA)
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Future works

Since we found that the eigenvectors tend to follow geodesic when we
train it, we can choose shrinkage point upon the geodesic.
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