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Introduction




Minimum Variance Portfolios with a Long-Only Constraint

Let e = (1, 1, ..., 1) € RP. We are interested in solutions of:

where
S=0288" +A

and 0® € Ry, B € R?, and A = diag(07,5,...,47) is diagonal in
RP*P with §2 > 0 for i € {1,...,p}.

The = > 0 condition is the Long-Only (LO) constraint. If it is
excluded, we say that the portfolio is Long-Short (LS).



Long-Only Portfolio Solution

Theorem (Solution to the Minimum Variance Portfolio)

Define
W(t) = Ztﬁi<1 52’/52'2
1/o? + Etﬁi<1 512/512

The minimum variance portfolio x can be found by computing the
following:

0 =1(0)

e max(1 —60;,0) oo Wi
(2 512 b (2 ‘]7):1 ’U}]

6 can be found via fixed-point iterations (i.e. computing
0k+1 = lb(ek) until 6, = 9k+1)



But How Do We Estimate Parameters?

Our solution z is clearly a function of three parameters: o2, 3 and
A.

These are unknown parameters, and must be estimated



Principal Component Analysis
Estimation




Model Parameters for Estimated 1-Factor Model

Define:

e Y € RPX™ be a matrix of security returns for p securities

e 3 is the True Covariance of all p securities
T : :
e S = % is the p x p Sample Covariance matrix

By spectral decomposition, we may write S = 623BT + G for
some matrix G
o 3 =562387 + diag(G). We define A = diag(() as the

diagonal matrix containing estimates for idiosyncratic variance

How does the portfolio (62, 3, A) do?



PCA For Long-Only Portfolios

True and Estimated Long-Only Volatility, 1-Factor Estimate and Truth
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Parameterized James-Stein
Eigenvector Estimation




Shrinkage Methodology

Principal Components are estimated vectors, and can thus be

improved via “shrinkage”

James-Stein Eigenvector Shrinkage
Let B be the first principal component and ¢ = |%| (i.e. ¢ is the
vector identical values of length 1). Define:

~ ~

(1) H=nlc)=cB+(1-c)B,q)q 0<c<1

The choice of ¢ is a parameter. A theoretically optimal value for ¢
for Long-Short portfolios is available in the literature. How does it
perform in the Long-Only setting?



PCA For Long-Only Portfolios

Long-Only Portfolio VoIatiIity with Shrinkage

6] [ Arbitrary Shrlnkage Parameter
¢ sample chosen in accordance with Long-Short Theory
—— Median PCA LO Volatility
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Choice of Shrinkage Parameter

e |t appears that the Long-Short JS parameter does somewhat
well in this situation, but we have no theoretical justification
in the Long-Only case

e How do we choose an optimal shrinkage parameter in the
Long-Only Case?

e Introduce a new idea: portfolio sensitivity



Portfolio Sensitivity Hypothesis




Guiding Intuition

e Qur goal is to find a portfolio that performs well even when
our estimates (for example, of (3) are wrong

e Portfolios that have weights that are not sensitive to changes
in parameters should be more robust

e lIdeally, portfolio sensitivity (which we will define) captures
sensitivity to estimation error

e We will test this hypothesis on the James-Stein Shrinkage
methodology

10



Portfolio Sensitivity |

Theorem (3 Portfolio Derivative
We can differentiate the (long-only) minimum-variance portfolio =

with respect to the model parameters 3; as follows:

(2)
Z 0w dwy,  Ox; _ Lpi=ry 2oy we — wilyps,<1y
8wk 8ﬁj 8wk Z?E:l w@)Z
(3)
ow,  —lggg.<1y
3 = (Prag +
(4)

o6 (1 1 —26(8,)B; 1

Similar theorems exist for 0% and 522 11



Portfolio Sensitivity Il

We have a notion of sensitivity (i.e. a derivative) with respect to
an individual j3; element.

We usually care about the statistical aspects of 3, however. We
therefore want a notion of sensitivity with respect to sample
statistics g of §; with g : RP — R Define:

dz;(B) (Vai(8),v)
d9(B) (Vg(B),v)

a natural choice is v = Vg(3) as this maximizes the change in g(0)

(v) =
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Choice of Statistic: Dispersion

We are focusing on a specific statistic of 3, namely the Dispersion.

Define:
o Let 7 = # be the Sample Mean of 8

e Let Var(p) = w be the Variance of

The Dispersion of 3 is defined as:

ar LS 1 (Be— B)?
(5) disp(8) = \/W: \/ 20 %( ¢ )
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Dispersion Sensitivity

Using the our definitions of sensitivity and dispersion, we can
define the sensitivity of a single portfolio weight with respect to
dispersion:

(9.% . <37Z(5)7 Vdisp(ﬁ))

ddisp(p)  (Vdisp(8), V disp(B))

In order to choose our shrinkage parameter, we need a way to

compare sensitivities of x(31) and z(32) for the entire vector. To

do so, define:

_ 0. 0. oz
o(6) = ‘(adis?(ﬁ) Bdisp(B) - Bdispp(ﬁ)> ’2
as the sensitivity of z(3) with respect to dispersion
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Testing Dispersion Sensitivity
Hypothesis




Long-Only Robustness

... Back to shrinkage

Objective: We want to find a better-performing portfolio via
shrinkage on

Idea: select ¢ that minimizes p(n(c)).

This can be done via a parameter search, as one may compute
o(n(c)) for know values of c.

ii5)



Dispersion Sensitivity and Long-Only Volatility Comparison

Long-Only Portfolio Volatility and Dispersion Sensitivity with Shrinkage

3 Arbitrary Shrinkage Parameter

——— Median PCA LO Volatility

—— ¢ that minimizes mean Dispersion Sensitivity
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Effect of Minimizing Dispersion Sensitivity

Long-Only Portfolio VoIatiIity with Shrinkage

6] [ Arbitrary Shrlnkage Parameter

¢ chosen in accordance with Long-Short Theory
Median PCA LO Volatility

e ¢ chosen minimizing Dispersion Sensitivity
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Mysterious Similarity to Long-Short James Stein

Optimal selection via dispersion sensitivity generally matches the
performance (i.e. experimental LO Volatility) of the optimal
portfolio found when Long-Short optimal James-Stein 3 shrinkage
is used to correct f3.

A priori- there is no reason for this match, as the corresponding
Long-Short JS correction also has much higher dispersion
sensitivities when compared to the g-minimizing portfolio.
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