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Introduction



Minimum Variance Portfolios with a Long-Only Constraint

Let e =
(
1, 1, . . . , 1

)
∈ Rp. We are interested in solutions of:

min
x∈Rp

x⊤Σx

s.t. x⊤e = 1

x ≥ 0

where

Σ = σ2ββ⊤ +∆

and σ2 ∈ R+, β ∈ Rp, and ∆ = diag(δ21 , δ
2
2 , . . . , δ

2
p) is diagonal in

Rp×p with δ2i > 0 for i ∈ {1, . . . , p}.
The x ≥ 0 condition is the Long-Only (LO) constraint. If it is

excluded, we say that the portfolio is Long-Short (LS).
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Long-Only Portfolio Solution

Theorem (Solution to the Minimum Variance Portfolio)

Define

ψ(t) =

∑
tβi<1 βi/δ

2
i

1/σ2 +
∑

tβi<1 β
2
i /δ

2
i

The minimum variance portfolio x can be found by computing the

following:

θ = ψ(θ)

wi =
max(1− θβi, 0)

δ2i
, xi =

wi∑p
j=1wj

θ can be found via fixed-point iterations (i.e. computing

θk+1 = ψ(θk) until θk = θk+1)
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But How Do We Estimate Parameters?

Our solution x is clearly a function of three parameters: σ2, β and

∆.

These are unknown parameters, and must be estimated
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Principal Component Analysis

Estimation



Model Parameters for Estimated 1-Factor Model

Define:

• Y ∈ Rp×n be a matrix of security returns for p securities

• Σ is the True Covariance of all p securities

• S = Y Y ⊤

n is the p× p Sample Covariance matrix

• By spectral decomposition, we may write S = σ̂2β̂β̂⊤ +G for

some matrix G

• Σ̂ = σ̂2β̂β̂⊤ + diag(G). We define ∆̂ = diag(G) as the

diagonal matrix containing estimates for idiosyncratic variance

How does the portfolio x(σ̂2, β̂, ∆̂) do?
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PCA For Long-Only Portfolios
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Parameterized James-Stein

Eigenvector Estimation



Shrinkage Methodology

Principal Components are estimated vectors, and can thus be

improved via “shrinkage”

James-Stein Eigenvector Shrinkage

Let β̂ be the first principal component and q = e
|e| (i.e. q is the

vector identical values of length 1). Define:

η̂ = η̂(c) = cβ̂ + (1− c)⟨β̂, q⟩q, 0 ≤ c ≤ 1(1)

The choice of c is a parameter. A theoretically optimal value for c

for Long-Short portfolios is available in the literature. How does it

perform in the Long-Only setting?
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PCA For Long-Only Portfolios
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Choice of Shrinkage Parameter

• It appears that the Long-Short JS parameter does somewhat

well in this situation, but we have no theoretical justification

in the Long-Only case

• How do we choose an optimal shrinkage parameter in the

Long-Only Case?

• Introduce a new idea: portfolio sensitivity
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Portfolio Sensitivity Hypothesis



Guiding Intuition

• Our goal is to find a portfolio that performs well even when

our estimates (for example, of β) are wrong

• Portfolios that have weights that are not sensitive to changes

in parameters should be more robust

• Ideally, portfolio sensitivity (which we will define) captures

sensitivity to estimation error

• We will test this hypothesis on the James-Stein Shrinkage

methodology
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Portfolio Sensitivity I

Theorem (β Portfolio Derivative)
We can differentiate the (long-only) minimum-variance portfolio x

with respect to the model parameters βj as follows:

∂xi
∂βj

=

p∑
k=1

∂xi
∂wk

∂wk

∂βj
;

∂xi
∂wk

=
1{i=k}

∑p
ℓ=1wℓ − wi1{θβi<1}∑p

(ℓ=1wℓ)2

(2)

∂wk

∂βj
=

−1{θβk<1}

δ2k

(
βk

∂θ

∂βj
+ θ1{j=k}

)(3)

∂θ

∂βj
=

(
1

δ2j

)(
1− 2θ(βj)βj

1/σ2 +
∑

θβk<1 β
2
k/δ

2
k

)
1{θβi<1}

(4)

Similar theorems exist for σ2 and δ2i 11



Portfolio Sensitivity II

We have a notion of sensitivity (i.e. a derivative) with respect to

an individual βi element.

We usually care about the statistical aspects of β, however. We

therefore want a notion of sensitivity with respect to sample

statistics g of β; with g : Rp 7→ R Define:

∂xi(β)

∂g(β)
(v) =

⟨∇xi(β), v⟩
⟨∇g(β), v⟩

a natural choice is v = ∇g(β) as this maximizes the change in g(β)
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Choice of Statistic: Dispersion

We are focusing on a specific statistic of β, namely the Dispersion.

Define:

• Let x̄ =
∑p

i=1 βi

p be the Sample Mean of β

• Let Var(β) =
∑p

i=1(βi−β̄)2

p be the Variance of β

The Dispersion of β is defined as:

disp(β) =

√
Var(β)

β̄
=

√
1
n

∑n
ℓ=1(βℓ − β̄)2

β̄
(5)
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Dispersion Sensitivity

Using the our definitions of sensitivity and dispersion, we can

define the sensitivity of a single portfolio weight with respect to

dispersion:

∂xi
∂disp(β)

=
⟨xi(β),∇ disp(β)⟩

⟨∇disp(β),∇ disp(β)⟩

In order to choose our shrinkage parameter, we need a way to

compare sensitivities of x(β1) and x(β2) for the entire vector. To

do so, define:

ϱ(β) =
∣∣∣( ∂x1

∂disp(β)
∂x2

∂disp(β) . . .
∂xp

∂disp(β)

)∣∣∣
2

as the sensitivity of x(β) with respect to dispersion
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Testing Dispersion Sensitivity

Hypothesis



Long-Only Robustness

... Back to shrinkage

Objective: We want to find a better-performing portfolio via

shrinkage on β

Idea: select c that minimizes ϱ(η(c)).

This can be done via a parameter search, as one may compute

ϱ(η(c)) for know values of c.
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Dispersion Sensitivity and Long-Only Volatility Comparison
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Effect of Minimizing Dispersion Sensitivity
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Mysterious Similarity to Long-Short James Stein

Optimal selection via dispersion sensitivity generally matches the

performance (i.e. experimental LO Volatility) of the optimal

portfolio found when Long-Short optimal James-Stein β shrinkage

is used to correct β.

A priori- there is no reason for this match, as the corresponding

Long-Short JS correction also has much higher dispersion

sensitivities when compared to the ϱ-minimizing portfolio.
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