Analysis of Return-Covariance Eigenvectors and Associated Minimum-Variance Portfolios

Alex Bernstein (joint with Alex Shkolnik) <abernstein@ucsb.edu>

September 13, 2024

Department of Statistics & Applied Probability University of California, Santa Barbara

[Introduction](#page-1-0)

Minimum Variance Portfolios with a Long-Only Constraint

Let
$$
e = \begin{pmatrix} 1, & 1, & \dots, & 1 \end{pmatrix} \in \mathbb{R}^p
$$
. We are interested in solutions of:

$$
\min_{x \in \mathbb{R}^p} \quad x^\top \Sigma x
$$
\n
$$
\text{s.t.} \quad x^\top \mathbf{e} = 1
$$
\n
$$
x \ge 0
$$

where

$$
\mathbf{\Sigma} = \sigma^2 \beta \beta^\top + \mathbf{\Delta}
$$

and $\sigma^2\in\mathbb R_+$, $\beta\in\mathbb R^p$, and $\bm{\Delta}=\textbf{diag}(\delta_1^2,\delta_2^2,\ldots,\delta_p^2)$ is diagonal in $\mathbb{R}^{p \times p}$ with $\delta_i^2 > 0$ for $i \in \{1, \ldots, p\}$. The $x \geq 0$ condition is the Long-Only (LO) constraint. If it is excluded, we say that the portfolio is Long-Short (LS).

Long-Only Portfolio Solution

Theorem (Solution to the Minimum Variance Portfolio)

Define

$$
\psi(t) = \frac{\sum_{t\beta_i < 1} \beta_i / \delta_i^2}{1/\sigma^2 + \sum_{t\beta_i < 1} \beta_i^2 / \delta_i^2}
$$

The minimum variance portfolio x can be found by computing the following:

$$
\theta = \psi(\theta)
$$

$$
w_i = \frac{\max(1 - \theta \beta_i, 0)}{\delta_i^2}, \quad x_i = \frac{w_i}{\sum_{j=1}^p w_j}
$$

 θ can be found via fixed-point iterations (i.e. computing $\theta_{k+1} = \psi(\theta_k)$ until $\theta_k = \theta_{k+1}$)

Our solution x is clearly a function of three parameters: σ^2, β and ∆.

These are unknown parameters, and must be estimated

[Principal Component Analysis](#page-5-0) **[Estimation](#page-5-0)**

Define:

- $Y \in \mathbb{R}^{p \times n}$ be a matrix of security returns for p securities
- Σ is the True Covariance of all p securities
- $S = \frac{YY^{\top}}{n}$ $\frac{Y}{n}$ is the $p \times p$ Sample Covariance matrix
- $\bullet\,$ By spectral decomposition, we may write $S=\hat{\sigma}^2\hat{\beta}\hat{\beta}^\top+G$ for some matrix G
- $\hat{\mathbf{\Sigma}}=\hat{\sigma}^2\hat{\beta}\hat{\beta}^\top+\mathsf{diag}(G)$. We define $\hat{\mathbf{\Delta}}=\mathsf{diag}(G)$ as the diagonal matrix containing estimates for idiosyncratic variance

How does the portfolio $x(\hat{\sigma}^2,\hat{\beta},\hat{\mathbf{\Delta}})$ do?

PCA For Long-Only Portfolios

[Parameterized James-Stein](#page-8-0) [Eigenvector Estimation](#page-8-0)

Principal Components are estimated vectors, and can thus be improved via "shrinkage"

James-Stein Eigenvector Shrinkage

Let $\hat{\beta}$ be the first principal component and $q = \frac{e}{\beta}$ $\frac{\text{e}}{|e|}$ (i.e. q is the vector identical values of length 1). Define:

(1)
$$
\hat{\eta} = \hat{\eta}(c) = c\hat{\beta} + (1 - c)\langle \hat{\beta}, q \rangle q, \quad 0 \le c \le 1
$$

The choice of c is a parameter. A theoretically optimal value for c for Long-Short portfolios is available in the literature. How does it perform in the Long-Only setting?

PCA For Long-Only Portfolios

- It appears that the Long-Short JS parameter does somewhat well in this situation, but we have no theoretical justification in the Long-Only case
- How do we choose an optimal shrinkage parameter in the Long-Only Case?
- Introduce a new idea: portfolio sensitivity

[Portfolio Sensitivity Hypothesis](#page-12-0)

- Our goal is to find a portfolio that performs well even when our estimates (for example, of β) are wrong
- Portfolios that have weights that are not sensitive to changes in parameters should be more robust
- Ideally, portfolio sensitivity (which we will define) captures sensitivity to estimation error
- We will test this hypothesis on the James-Stein Shrinkage methodology

Portfolio Sensitivity I

Theorem (β Portfolio Derivative)

We can differentiate the (long-only) minimum-variance portfolio x with respect to the model parameters β_i as follows:

(2)
\n
$$
\frac{\partial x_i}{\partial \beta_j} = \sum_{k=1}^p \frac{\partial x_i}{\partial w_k} \frac{\partial w_k}{\partial \beta_j}; \quad \frac{\partial x_i}{\partial w_k} = \frac{\mathbf{1}_{\{i=k\}} \sum_{\ell=1}^p w_\ell - w_i \mathbf{1}_{\{\theta \beta_i < 1\}}}{\sum_{\ell=1}^p w_\ell)^2}
$$
\n(3)
\n
$$
\frac{\partial w_k}{\partial \beta_j} = \frac{-\mathbf{1}_{\{\theta \beta_k < 1\}}}{\delta_k^2} \left(\beta_k \frac{\partial \theta}{\partial \beta_j} + \theta \mathbf{1}_{\{j=k\}} \right)
$$
\n(4)
\n
$$
\frac{\partial \theta}{\partial \beta_j} = \left(\frac{1}{\delta_j^2} \right) \left(\frac{1 - 2\theta(\beta_j)\beta_j}{1/\sigma^2 + \sum_{\theta \beta_k < 1} \beta_k^2/\delta_k^2} \right) \mathbf{1}_{\{\theta \beta_i < 1\}}
$$

Similar theorems exist for σ^2 and δ_i^2

We have a notion of sensitivity (i.e. a derivative) with respect to an individual β_i element.

We usually care about the statistical aspects of β , however. We therefore want a notion of sensitivity with respect to sample statistics g of β ; with $g : \mathbb{R}^p \mapsto \mathbb{R}$ Define:

$$
\frac{\partial x_i(\beta)}{\partial g(\beta)}(v) = \frac{\langle \nabla x_i(\beta), v \rangle}{\langle \nabla g(\beta), v \rangle}
$$

a natural choice is $v = \nabla g(\beta)$ as this maximizes the change in $g(\beta)$

We are focusing on a specific statistic of β , namely the *Dispersion*. Define:

\n- Let
$$
\bar{x} = \frac{\sum_{i=1}^{p} \beta_i}{p}
$$
 be the Sample Mean of β
\n- Let $\text{Var}(\beta) = \frac{\sum_{i=1}^{p} (\beta_i - \bar{\beta})^2}{p}$ be the Variance of β
\n

The Dispersion of β is defined as:

(5)
$$
\mathrm{disp}(\beta) = \frac{\sqrt{\mathrm{Var}(\beta)}}{\overline{\beta}} = \frac{\sqrt{\frac{1}{n}\sum_{\ell=1}^n(\beta_\ell - \overline{\beta})^2}}{\overline{\beta}}
$$

Using the our definitions of sensitivity and dispersion, we can define the sensitivity of a single portfolio weight with respect to dispersion:

$$
\frac{\partial x_i}{\partial \text{disp}(\beta)} = \frac{\langle x_i(\beta), \nabla \text{disp}(\beta) \rangle}{\langle \nabla \text{disp}(\beta), \nabla \text{disp}(\beta) \rangle}
$$

In order to choose our shrinkage parameter, we need a way to compare sensitivities of $x(\beta_1)$ and $x(\beta_2)$ for the entire vector. To do so, define:

$$
\varrho(\beta) = \left| \begin{pmatrix} \frac{\partial x_1}{\partial \text{disp}(\beta)} & \frac{\partial x_2}{\partial \text{disp}(\beta)} \dots & \frac{\partial x_p}{\partial \text{disp}(\beta)} \end{pmatrix} \right|_2
$$

as the sensitivity of $x(\beta)$ with respect to dispersion

[Testing Dispersion Sensitivity](#page-18-0) **[Hypothesis](#page-18-0)**

... Back to shrinkage

Objective: We want to find a better-performing portfolio via shrinkage on $β$

Idea: select c that minimizes $\rho(\eta(c))$.

This can be done via a parameter search, as one may compute $\rho(\eta(c))$ for know values of c.

Dispersion Sensitivity and Long-Only Volatility Comparison

Effect of Minimizing Dispersion Sensitivity

Optimal selection via dispersion sensitivity generally matches the performance (i.e. experimental LO Volatility) of the optimal portfolio found when Long-Short optimal James-Stein β shrinkage is used to correct β .

A priori- there is no reason for this match, as the corresponding Long-Short JS correction also has much higher dispersion sensitivities when compared to the ϱ -minimizing portfolio.