Portfolio Volatility Estimation: PCA and James-Stein Approaches

Zhuoli Jin

Department of Statistics and Applied Probability

September 20, 2024

 $= \Omega Q$

The Markowitz mean-variance portfolio is obtained from solving the following:

$$
\min_{\substack{\omega \\ \text{subject to} \quad \mu^{\top} w \ge \alpha \\ e^{\top} w = 1,}} \tag{1}
$$

where e is a p-vector of ones, α is a return target. μ is (true) means of asset returns and Σ is (true) covariance of asset returns.

Goal: determine $w = (w_1, w_2, \cdots, w_p)^\top$.

Efficient Frontier

Use the Lagrange multipliers, the solution to Eq [1](#page-1-0) is:

$$
w = \gamma_e \Sigma^{-1} e + \gamma_\mu \Sigma^{-1} \mu. \tag{2}
$$

 $E \Omega$

\n- \n
$$
\mathcal{L} \mathcal{L} = \frac{\mu^{\top} \Sigma^{-1} e}{e^{\top} \Sigma^{-1} e} \geq \alpha
$$
:\n $\text{Pick the minimum variance solution } w = \frac{\Sigma^{-1} e}{e^{\top} \Sigma^{-1} e}$.\n
\n- \n $\mathcal{L} \mathcal{L} \mathcal{L} = \frac{\mu^{\top} \Sigma^{-1} e}{e^{\top} \Sigma^{-1} e} < \alpha$:\n $\text{Pick the tangency portfolio } w = \frac{1}{2} \Sigma^{-1} (\lambda_1 \mu + \lambda_2 e)$ with $A = e^{\top} \Sigma^{-1} e, B = e^{\top} \Sigma^{-1} \mu, C = \mu^{\top} \Sigma^{-1} \mu$.\n
\n

Denote $p \times n$ matrix R as asset return.

 \bullet μ : vector of estimated returns. Use *m* to denote the estimate. Common estimates:

- Sample mean: $m = (\overline{R}_1, \overline{R}_2, \cdots, \overline{R}_p)^\top$ with $\overline{R}_i = \frac{1}{n} \sum_{j=1}^n R_{i,j}$
- James-Stein return constraint.
- \bullet Σ : covariance matrix of the asset returns. Use $\hat{\Sigma}$ to denote the estimate. Sample covariance: S. Common estimates:
	- **PCA** estimator
	- James-Stein shrinkage estimator
	- Ledoit-Wolf shrinkage estimator
	- Other estimators (to be listed later).

Table: Common Notations in Testing Framework

4日 ト

目目 のへい

Testing Framework II

Zhuoli Jin [PSTAT UCSB](#page-0-0)

(ロ) (個) (目) (目) (目) 目目 のQ (V

- **Eigen decomposition on centered sample covariance matrix S.**
- ² Write sample covariance matrix as sum of two parts: the first part consists of K leading eigenpairs, the second part is the reminder.

$$
S = H_{p \times k} H_{p \times k}^{\top} + G
$$

 \bullet The specific risk estimate Δ :

$$
\Delta = diag(G)
$$

Check Appendix [16](#page-15-0) for details.

- **Estimate return constraint vector** μ **using James-Stein** shrinkage.
- 2 Apply shrinkage to the eigenvectors.

$$
H_{JS}=HC+M(I-C),
$$

where $M_{p\times k}$ is shrinkage target based on constraints μ and e, and $C_{k\times k}$ is the shrinkage matrix.

Check Appendix [18](#page-17-0) for details.

 $= \Omega Q$

Numerical Model

 $r = \mu + BX + \epsilon$

- Number of factors: 7.
- $\mu \in \mathbb{R}^p$: Expected security return with mean 6.28.
- $\alpha = 8$: the portfolio return shall exceed 8.
- \bullet $B_{p\times7}$: Factor loading (e.g: market factor, size factors, sector-specific factor, etc.) Check Appendix [13](#page-12-0) for details.
- $x \in \mathbb{R}^7$: Factor return, Gaussian distributed
- $\epsilon \in \mathbb{R}^p$: Idiosyncratic risk, Gaussian distributed

We collect observations of r in \mathbb{R}^p , forming a data matrix for analysis.

Table: Portfolio volatility statistics ($n = 125$, $\mu = 8$, 100 investment dates)

 $\exists \exists \Rightarrow \land Q \land \land$

Zhuoli Jin [PSTAT UCSB](#page-0-0)

K ロ > K @ ▶ K ミ > K ミ > [로 > 10 Q Q Q

Factor Loadings I

4日 ト

冊

 \mathcal{A} \rightarrow 4 ∍ \mathbb{R}^2 \prec E $\,$ $\,$ 暑目 のへぐ

Factor Loadings II

4日 ト

 \mathcal{A}

Ξ

 \mathcal{A}

Ε

 \prec **B** $2Q$

그녀님...

Factor Loadings III

(e) Block Post

メロメメ 御 メメ きょくきょ

暑目 のへぐ

PCA I

PCA Assumption

- $p >> n$
- Low Effective Rank $(K \ll e)$
- **•** Sparsity or Low-Rank Structure (the covariance matrix can be well approximated by a matrix with fewer non-zero eigenvalues).
- Noiseless Data or Low Noise

 Ω

PCA II

PCA Recipe

- \bullet Compute Sample Covariance Matrix: the sample covariance matrix S is computed as $S = \frac{1}{n}YY^{\top}$.
- 2 Perform Spectral Decomposition: decompose S into its eigenvalues and eigenvectors

$$
S = V \Lambda V^T,
$$

where $\Lambda = diag\{\lambda_1, \lambda_2, \cdots, \lambda_n\}$ with $\lambda_1 > \lambda_2 > \cdots > \lambda_n$, and $V = (v_1, v_2, \dots, v_n)$ with each v_i the corresponding eigenvector of λ_i

- **3** Select Principal Components: choose the top K PCs so we have V_K and Λ_K . Now we have $S = HH^T + G$ with $HH^\top = V_K \Lambda_K V_K^\top$ and G being the residuals.
- 4 Construct PCA-Based Covariance Matrix:

$$
\hat{\Sigma}_{PCA} = HH^{\top} + \rho(G), \qquad (3)
$$

with $\rho()$ being the regularization operator on G to make $\hat{\Sigma}$ of full rank, for example

$$
\rho(G) = Diag(G). \tag{4}
$$

 $E \rightarrow E E$ $E \rightarrow Q$

James-Stein I

кш ж к舟 ж к∃ ж к∃ ж ∃|≝ кОро

James-Stein II

James-Stein Return Constraint **1** The James-Stein recipe to improve the sample mean estimate $m = \overline{r}$ is given for any p-vector $M \neq m$ by $m_{JS} = cm + (1 - c)M$, $c = 1 - \frac{v^2}{(m - M)^T}$ $(m - M)^{\top}(m - M)$ (5) where $v^2 = \frac{tr(G)}{f}$ $n_{+} - K$, (6) and n_+ is the number of nonzero eigenvalues of S in PCA recipe. Step 2: The shrinkage target M maybe any p-vector, but commonly be the grand mean $M = \frac{\langle m, e \rangle}{\langle m, e \rangle}$ $\frac{\langle m, e \rangle}{\langle e, e \rangle} e = \left(\sum_{i=1}^{p} m_i / p \right) e.$ (7)

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶ - ヨ ヨ - K) Q (^

James-Stein III

1 For any estimate $\rho(G)$ that is not a scalar matrix, we replace Y by $Y = \rho(G)^{-1/2}(R - [r, \overline{r}, \cdots, \overline{r}])$, where $\rho(G)^{-1/2}$ is diagonal with $\rho(G)_{ii}^{-1/2} = 1/\sqrt{\rho(G)_{ii}}.$

- 2 Recompute H following $S = HH^{\top} + G$ but from the reweighted sample covariance matrix S using above updated \overline{Y} .
- 3 Take m_{is} in E[q5](#page-18-0) and assemble the matrix

$$
A = \rho(G)^{-1/2}(m_{js} e).
$$
 (8)

4 Compute the pseudo-inverse
$$
A^{\dagger} = (A^{\top} A)^{-1} A^{\top}
$$
, and take ν^2 in Eq 7, we define the variables

$$
M = AA^{\dagger}H \quad J = (H - M)^{\top}(H - M) \quad C = I - \nu^{2}J^{-1}.
$$
 (9)

The James-Stein estimator for H is

$$
H_{JS} = HC + M(I - C) \tag{10}
$$

for C a $K \times K$ matrix and M a $p \times k$ matrix.

6 The James-Stein estimator for Σ is

$$
\hat{\Sigma}_{JS} = \rho(G)^{1/2} (H_{JS} H_{JS}^{\top} + I) \rho(G)^{1/2}.
$$
\n(11)

References I

Zhuoli Jin [PSTAT UCSB](#page-0-0)

K ロ > K @ ▶ K ミ > K ミ > [로 > 10 Q Q Q