# Portfolio Volatility Estimation: PCA and James-Stein Approaches

### Zhuoli Jin

### Department of Statistics and Applied Probability

September 20, 2024



The Markowitz mean-variance portfolio is obtained from solving the following:

$$\begin{array}{ll} \min_{\omega} & w^{\top} \Sigma w \\ \text{subject to} & \mu^{\top} w \geq \alpha \\ & e^{\top} w = 1, \end{array}$$
 (1)

where e is a p-vector of ones,  $\alpha$  is a return target.  $\mu$  is (true) means of asset returns and  $\Sigma$  is (true) covariance of asset returns.

Goal: determine  $w = (w_1, w_2, \cdots, w_p)^\top$ .

# Efficient Frontier



Use the Lagrange multipliers, the solution to Eq 1 is:

$$w = \gamma_e \Sigma^{-1} e + \gamma_\mu \Sigma^{-1} \mu.$$
 (2)

Denote  $p \times n$  matrix R as asset return.

μ: vector of estimated returns.
 Use m to denote the estimate.
 Common estimates:

- Sample mean:  $m = (\overline{R}_1, \overline{R}_2, \cdots, \overline{R}_p)^{\top}$  with  $\overline{R}_i = \frac{1}{n} \sum_{i=1}^n R_{i,j}$
- James-Stein return constraint.

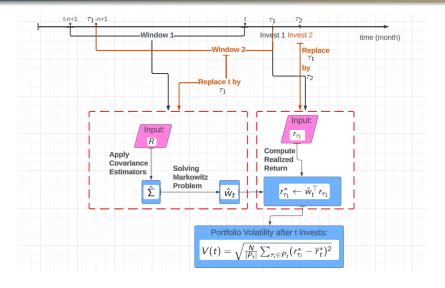
 Σ: covariance matrix of the asset returns. Use Σ̂ to denote the estimate. Sample covariance: S. Common estimates:

- PCA estimator
- James-Stein shrinkage estimator
- Ledoit-Wolf shrinkage estimator
- Other estimators (to be listed later).

| <i>r</i> <sub>t</sub> | Return to $p$ assets on time (month) $t$                                                                                                                                                    |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R <sub>t</sub>        | $R_t = (r_{t-n+1}, \cdots, r_t)$ a $p \times n$ matrix of returns at time t with lookback window of size n                                                                                  |
|                       |                                                                                                                                                                                             |
| $Y_t$                 | $R_t$ centered, $Y_t = R_t - [\overline{r}_t, \cdots, \overline{r}_t]$ with $\overline{r_t}$ be the p-vector average of the n columns of $R_t$ . Needed to compute sample covariance matrix |
|                       | the n columns of $R_t$ . Needed to compute sample covariance matrix                                                                                                                         |
| ŵt                    | Estimated portfolio weights at time t                                                                                                                                                       |
| N                     | The number of times $t$ is incremented until a year goes by, e.g. $r_t$ in                                                                                                                  |
|                       | units of monthly return implies $N = 12$                                                                                                                                                    |
| Pt                    | Set of times counting back from t                                                                                                                                                           |

Table: Common Notations in Testing Framework

# Testing Framework II



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Eigen decomposition on centered sample covariance matrix S.
- Write sample covariance matrix as sum of two parts: the first part consists of K leading eigenpairs, the second part is the reminder.

$$S = H_{p \times k} H_{p \times k}^{\top} + G$$

**3** The specific risk estimate  $\Delta$ :

$$\Delta = diag(G)$$

Check Appendix 16 for details.

- Estimate return constraint vector  $\mu$  using James-Stein shrinkage.
- Apply shrinkage to the eigenvectors.

$$H_{JS} = HC + M(I - C),$$

where  $M_{p \times k}$  is shrinkage target based on constraints  $\mu$  and e, and  $C_{k \times k}$  is the shrinkage matrix.

Check Appendix 18 for details.

# Numerical Model

 $\mathbf{r} = \boldsymbol{\mu} + \mathbf{B}\mathbf{X} + \boldsymbol{\epsilon}$ 

- Number of factors: 7.
- $\mu \in \mathbb{R}^{p}$ : Expected security return with mean 6.28.
- $\alpha = 8$ : the portfolio return shall exceed 8.
- B<sub>p×7</sub>: Factor loading (e.g: market factor, size factors, sector-specific factor, etc.) Check Appendix 13 for details.
- $x \in \mathbb{R}^7$ : Factor return, Gaussian distributed
- $\epsilon \in \mathbb{R}^{p}$ : Idiosyncratic risk, Gaussian distributed

We collect observations of r in  $\mathbb{R}^{p}$ , forming a data matrix for analysis.

| р      | PCA $V(t)$ | James-Stein $V(t)$ |
|--------|------------|--------------------|
| 500    | 7.82       | 6.74               |
| 1000   | 7.08       | 6.36               |
| 2000   | 7.18       | 5.07               |
| 3000   | 5.96       | 3.74               |
| 100000 | 5.61       | 0.84               |

Table: Portfolio volatility statistics (n = 125,  $\mu = 8$ , 100 investment dates)

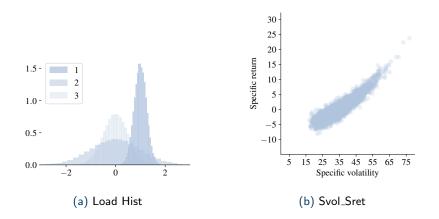
= 200

Zhuoli Jin PSTAT UCSB

・ロト ・回 ト ・ヨト ・ヨト

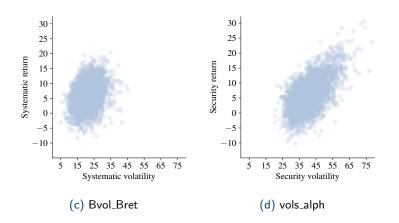
三日 のへの

# Factor Loadings I



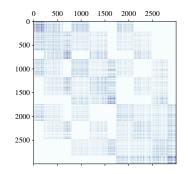
三日 のへの

# Factor Loadings II



-

# Factor Loadings III



(e) Block Post

<ロト <部ト <きト <きト

三日 のへの

# PCA I

### **PCA** Assumption

- *p* >> *n*
- Low Effective Rank (K << p)
- Sparsity or Low-Rank Structure (the covariance matrix can be well approximated by a matrix with fewer non-zero eigenvalues).
- Noiseless Data or Low Noise

# PCA II

### PCA Recipe

- **()** Compute Sample Covariance Matrix: the sample covariance matrix S is computed as  $S = \frac{1}{a} Y Y^{\top}$ .
- Perform Spectral Decomposition: decompose S into its eigenvalues and eigenvectors

$$S = V\Lambda V^T$$
,

where  $\Lambda = diag\{\lambda_1, \lambda_2, \dots, \lambda_n\}$  with  $\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_n$ , and  $V = (v_1, v_2, \dots, v_n)$  with each  $v_i$  the corresponding eigenvector of  $\lambda_i$ 

- Select Principal Components: choose the top K PCs so we have  $V_K$ and  $\Lambda_K$ . Now we have  $S = HH^T + G$  with  $HH^T = V_K \Lambda_K V_K^T$  and Gbeing the residuals.
- Onstruct PCA-Based Covariance Matrix:

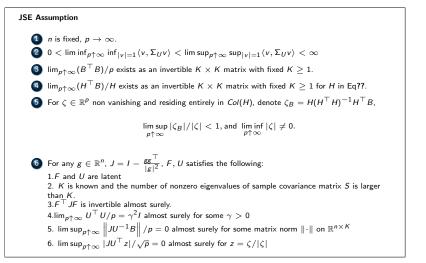
$$\hat{\Sigma}_{PCA} = HH^{\top} + \rho(G), \tag{3}$$

with  $\rho()$  being the regularization operator on G to make  $\hat{\Sigma}$  of full rank, for example

$$\rho(G) = Diag(G). \tag{4}$$

> = = ~ ~ ~

### James-Stein I



イロト (母) (ヨト (ヨト ) ヨヨ うのつ

# James-Stein II

### James-Stein Return Constraint

The James-Stein recipe to improve the sample mean estimate  $m = \overline{r}$  is given for any p-vector  $M \neq m$  by

$$m_{JS} = cm + (1 - c)M, \quad c = 1 - \frac{\nu^2}{(m - M)^{\top}(m - M)},$$
 (5)

where

$$\nu^{2} = \frac{tr(G)}{n_{+} - K},$$
(6)

and  $n_{+}$  is the number of nonzero eigenvalues of S in PCA recipe.

Step 2: The shrinkage target M maybe any p-vector, but commonly be the grand mean

$$M = \frac{\langle m, e \rangle}{\langle e, e \rangle} e = \left(\sum_{i=1}^{p} m_i / p\right) e.$$
(7)

< □ > < 同 > < 回

# James-Stein III

### James-Stein Recipe

- In For any estimate  $\rho(G)$  that is not a scalar matrix, we replace Y by  $Y = \rho(G)^{-1/2} (R - [\overline{r}, \overline{r}, \cdots, \overline{r}])$ , where  $\rho(G)^{-1/2}$  is diagonal with  $\rho(G)_{ii}^{-1/2} = 1/\sqrt{\rho(G)_{ii}}.$

4

- 2 Recompute H following  $S = HH^{\top} + G$  but from the reweighted sample covariance matrix S using above updated Y.
- 3 Take mis in Eq5 and assemble the matrix

$$A = \rho(G)^{-1/2} (m_{js} \ e). \tag{8}$$

Compute the pesudo-inverse 
$$A^{\dagger}=(A^{ op}A)^{-1}A^{ op}$$
 , and take  $u^2$  in Eq 7, we define the variables

$$M = AA^{\dagger}H \quad J = (H - M)^{\top}(H - M) \quad C = I - \nu^2 J^{-1}.$$
 (9)

The James-Stein estimator for H is 5

$$H_{JS} = HC + M(I - C) \tag{10}$$

for C a  $K \times K$  matrix and M a  $p \times k$  matrix.

The James-Stein estimator for  $\boldsymbol{\Sigma}$  is

$$\hat{\Sigma}_{JS} = \rho(G)^{1/2} (H_{JS} H_{JS}^{\top} + I) \rho(G)^{1/2}.$$
(11)

# References I

Zhuoli Jin PSTAT UCSB