Portfolio Volatility Estimation: PCA and James-Stein Approaches

Zhuoli Jin

Department of Statistics and Applied Probability

September 20, 2024

The Markowitz mean-variance portfolio is obtained from solving the following:

$$\begin{array}{ll} \min_{\omega} & w^{\top} \Sigma w \\ \text{subject to} & \mu^{\top} w \geq \alpha \\ & e^{\top} w = 1, \end{array}$$
 (1)

where e is a p-vector of ones, α is a return target. μ is (true) means of asset returns and Σ is (true) covariance of asset returns.

Goal: determine $w = (w_1, w_2, \cdots, w_p)^\top$.

Efficient Frontier

Use the Lagrange multipliers, the solution to Eq 1 is:

$$w = \gamma_e \Sigma^{-1} e + \gamma_\mu \Sigma^{-1} \mu.$$
 (2)

Denote $p \times n$ matrix R as asset return.

μ: vector of estimated returns.
 Use m to denote the estimate.
 Common estimates:

- Sample mean: $m = (\overline{R}_1, \overline{R}_2, \cdots, \overline{R}_p)^{\top}$ with $\overline{R}_i = \frac{1}{n} \sum_{i=1}^n R_{i,j}$
- James-Stein return constraint.

 Σ: covariance matrix of the asset returns. Use Σ̂ to denote the estimate. Sample covariance: S. Common estimates:

- PCA estimator
- James-Stein shrinkage estimator
- Ledoit-Wolf shrinkage estimator
- Other estimators (to be listed later).

<i>r</i> _t	Return to p assets on time (month) t
R _t	$R_t = (r_{t-n+1}, \cdots, r_t)$ a $p \times n$ matrix of returns at time t with lookback window of size n
Y_t	R_t centered, $Y_t = R_t - [\overline{r}_t, \cdots, \overline{r}_t]$ with $\overline{r_t}$ be the p-vector average of the n columns of R_t . Needed to compute sample covariance matrix
	the n columns of R_t . Needed to compute sample covariance matrix
ŵt	Estimated portfolio weights at time t
N	The number of times t is incremented until a year goes by, e.g. r_t in
	units of monthly return implies $N = 12$
Pt	Set of times counting back from t

Table: Common Notations in Testing Framework

Testing Framework II

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Eigen decomposition on centered sample covariance matrix S.
- Write sample covariance matrix as sum of two parts: the first part consists of K leading eigenpairs, the second part is the reminder.

$$S = H_{p \times k} H_{p \times k}^{\top} + G$$

3 The specific risk estimate Δ :

$$\Delta = diag(G)$$

Check Appendix 16 for details.

- Estimate return constraint vector μ using James-Stein shrinkage.
- Apply shrinkage to the eigenvectors.

$$H_{JS} = HC + M(I - C),$$

where $M_{p \times k}$ is shrinkage target based on constraints μ and e, and $C_{k \times k}$ is the shrinkage matrix.

Check Appendix 18 for details.

Numerical Model

 $\mathbf{r} = \boldsymbol{\mu} + \mathbf{B}\mathbf{X} + \boldsymbol{\epsilon}$

- Number of factors: 7.
- $\mu \in \mathbb{R}^{p}$: Expected security return with mean 6.28.
- $\alpha = 8$: the portfolio return shall exceed 8.
- B_{p×7}: Factor loading (e.g: market factor, size factors, sector-specific factor, etc.) Check Appendix 13 for details.
- $x \in \mathbb{R}^7$: Factor return, Gaussian distributed
- $\epsilon \in \mathbb{R}^{p}$: Idiosyncratic risk, Gaussian distributed

We collect observations of r in \mathbb{R}^{p} , forming a data matrix for analysis.

р	PCA $V(t)$	James-Stein $V(t)$
500	7.82	6.74
1000	7.08	6.36
2000	7.18	5.07
3000	5.96	3.74
100000	5.61	0.84

Table: Portfolio volatility statistics (n = 125, $\mu = 8$, 100 investment dates)

= 200

Zhuoli Jin PSTAT UCSB

・ロト ・回 ト ・ヨト ・ヨト

三日 のへの

Factor Loadings I

三日 のへの

Factor Loadings II

-

Factor Loadings III

(e) Block Post

<ロト <部ト <きト <きト

三日 のへの

PCA I

PCA Assumption

- *p* >> *n*
- Low Effective Rank (K << p)
- Sparsity or Low-Rank Structure (the covariance matrix can be well approximated by a matrix with fewer non-zero eigenvalues).
- Noiseless Data or Low Noise

PCA II

PCA Recipe

- **()** Compute Sample Covariance Matrix: the sample covariance matrix S is computed as $S = \frac{1}{a} Y Y^{\top}$.
- Perform Spectral Decomposition: decompose S into its eigenvalues and eigenvectors

$$S = V\Lambda V^T$$
,

where $\Lambda = diag\{\lambda_1, \lambda_2, \dots, \lambda_n\}$ with $\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_n$, and $V = (v_1, v_2, \dots, v_n)$ with each v_i the corresponding eigenvector of λ_i

- Select Principal Components: choose the top K PCs so we have V_K and Λ_K . Now we have $S = HH^T + G$ with $HH^T = V_K \Lambda_K V_K^T$ and Gbeing the residuals.
- Onstruct PCA-Based Covariance Matrix:

$$\hat{\Sigma}_{PCA} = HH^{\top} + \rho(G), \tag{3}$$

with $\rho()$ being the regularization operator on G to make $\hat{\Sigma}$ of full rank, for example

$$\rho(G) = Diag(G). \tag{4}$$

> = = ~ ~ ~

James-Stein I

イロト (母) (ヨト (ヨト) ヨヨ うのつ

James-Stein II

James-Stein Return Constraint

The James-Stein recipe to improve the sample mean estimate $m = \overline{r}$ is given for any p-vector $M \neq m$ by

$$m_{JS} = cm + (1 - c)M, \quad c = 1 - \frac{\nu^2}{(m - M)^{\top}(m - M)},$$
 (5)

where

$$\nu^{2} = \frac{tr(G)}{n_{+} - K},$$
(6)

and n_{+} is the number of nonzero eigenvalues of S in PCA recipe.

Step 2: The shrinkage target M maybe any p-vector, but commonly be the grand mean

$$M = \frac{\langle m, e \rangle}{\langle e, e \rangle} e = \left(\sum_{i=1}^{p} m_i / p\right) e.$$
(7)

< □ > < 同 > < 回

James-Stein III

James-Stein Recipe

- In For any estimate $\rho(G)$ that is not a scalar matrix, we replace Y by $Y = \rho(G)^{-1/2} (R - [\overline{r}, \overline{r}, \cdots, \overline{r}])$, where $\rho(G)^{-1/2}$ is diagonal with $\rho(G)_{ii}^{-1/2} = 1/\sqrt{\rho(G)_{ii}}.$

4

- 2 Recompute H following $S = HH^{\top} + G$ but from the reweighted sample covariance matrix S using above updated Y.
- 3 Take mis in Eq5 and assemble the matrix

$$A = \rho(G)^{-1/2} (m_{js} \ e). \tag{8}$$

Compute the pesudo-inverse
$$A^{\dagger}=(A^{ op}A)^{-1}A^{ op}$$
 , and take u^2 in Eq 7, we define the variables

$$M = AA^{\dagger}H \quad J = (H - M)^{\top}(H - M) \quad C = I - \nu^2 J^{-1}.$$
 (9)

The James-Stein estimator for H is 5

$$H_{JS} = HC + M(I - C) \tag{10}$$

for C a $K \times K$ matrix and M a $p \times k$ matrix.

The James-Stein estimator for $\boldsymbol{\Sigma}$ is

$$\hat{\Sigma}_{JS} = \rho(G)^{1/2} (H_{JS} H_{JS}^{\top} + I) \rho(G)^{1/2}.$$
(11)

References I

Zhuoli Jin PSTAT UCSB