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The Markowitz mean-variance portfolio is obtained from solving
the following:

min w!Tw
w
subject to u'w > « (1)
elw=1,

where e is a p-vector of ones, « is a return target. p is (true)
means of asset returns and X is (true) covariance of asset returns.

: : _ T
Goal: determine w = (wy, wo, -+, wp) .
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Solution to Markowitz Problem

Use the Lagrange multipliers, the solution to Eq 1 is:

w =X te+y, I 1L (2)

HTZ_le
elY-1le

Pick the minimum variance solution w =

o Case 1: >
s le
ely-1le-

Ty-1
e Case 2: % <o

Pick the tangency portfolio w = %Z_l()\l,u + Aze) with
A=e 'Y leB=e"Y 1y, C=p's 1
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Quick Discussion

Denote p x n matrix R as asset return.

@ u: vector of estimated returns.
Use m to denote the estimate.
Common estimates:
o Sample mean: m = (R1,Ra,-- ,R,)" with R; = %2;21 Ri;
e James-Stein return constraint.
@ X: covariance matrix of the asset returns.
Use 3 to denote the estimate.
Sample covariance: S.
Common estimates:

PCA estimator

James-Stein shrinkage estimator
Ledoit-Wolf shrinkage estimator
Other estimators (to be listed later).
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Testing Framework |

re | Return to p assets on time (month) t

Re | Re = (ft—nt1,- -, re) @ p X n matrix of returns at time t with lookback
window of size n
Y: | R: centered, Y = Ry — [F¢,--- ,T:] with 7 be the p-vector average of

the n columns of R;. Needed to compute sample covariance matrix
Wy | Estimated portfolio weights at time t

N | The number of times t is incremented until a year goes by, e.g. r; in
units of monthly return implies N = 12

P: | Set of times counting back from t

Table: Common Notations in Testing Framework
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Testing Framework ||
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© Eigen decomposition on centered sample covariance matrix S.

@ Write sample covariance matrix as sum of two parts: the first
part consists of K leading eigenpairs, the second part is the
reminder.

-

© The specific risk estimate A:
A = diag(G)

Check Appendix 16 for details.
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© Estimate return constraint vector u using James-Stein
shrinkage.

@ Apply shrinkage to the eigenvectors.
Hjys = HC + M(I — C),

where M, is shrinkage target based on constraints y and e,
and Cyxx is the shrinkage matrix.

Check Appendix 18 for details.
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Numerical Model

r=p+BX+e€
Number of factors: 7.
1 € RP: Expected security return with mean 6.28.

« = 8: the portfolio return shall exceed 8.

Bpx7: Factor loading (e.g: market factor, size factors,
sector-specific factor, etc.) Check Appendix 13 for details.

@ x € R7: Factor return, Gaussian distributed
@ ¢ € RP: Idiosyncratic risk, Gaussian distributed

We collect observations of r in RP, forming a data matrix for
analysis.

Zhuoli Jin PSTAT UCSB



Numerical Results

p PCA V/(t) | James-Stein V(t)
500 7.82 6.74
1000 7.08 6.36
2000 7.18 5.07
3000 5.96 3.74
100000 5.61 0.84

Table: Portfolio volatility statistics (n = 125, ;1 = 8, 100 investment
dates)
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Appendix
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Factor Loadings Il
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Factor Loadings IlI
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Appendix t

PCA Assumption
e p>>n
e Low Effective Rank (K << p)

@ Sparsity or Low-Rank Structure (the covariance matrix
can be well approximated by a matrix with fewer
non-zero eigenvalues).

@ Noiseless Data or Low Noise
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Appendix

PCA Recipe

@ Compute Sample Covariance Matrix: the sample covariance matrix S is
computed as S = %YYT.

@ Perform Spectral Decomposition: decompose S into its eigenvalues and
eigenvectors

S=VAVT,
where A = diag{A1, A2, -+ ,An} with A\ > X2 > -+ > A,, and
V = (v1,v2,- -+, vn) with each v; the corresponding eigenvector of \;
© Select Principal Components: choose the top K PCs — so we have Vi

and Ax. Now we have S = HHT + G with HHT = VK/\KVKT and G
being the residuals.

@ Construct PCA-Based Covariance Matrix:
Ypca=HH' +p(G), (3)

with p() being the regularization operator on G to make 3 of full rank,
for example

p(G) = Diag(G). (4)
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Appendix

James-Stein |

JSE Assumption

o n is fixed, p — oco.

e 0 < liminfy g inf, =1 (v, Zyv) < limsupypog supjy =1 (v, Tyv) < oo

e Iimm-oo(B—r B)/p exists as an invertible K X K matrix with fixed K > 1.

@ 'imyroo(HT B)/H exists as an invertible K x K matrix with fixed K > 1 for H in Eq??.

e For ¢ € RP non vanishing and residing entirely in Col(H), denote (g = H(H-r H)leTB,

limsup [¢g|/]¢] < 1,and liminf [¢] # 0.
pToo ptoo

-
G Foranyg € R", J =1 — %, F, U satisfies the following:
g

I
1.F and U are latent
2. K is known and the number of nonzero eigenvalues of sample covariance matrix S is larger
than K.
3.F T JF is invertible almost surely.
4limpp oo uT U/p = 'yzl almost surely for some v > 0

5. lim suppp oo ||JU_1B|| /p = 0 almost surely for some matrix norm ||-|| on RXK

6. limsup,p o \JUTZ|/\/E = 0 almost surely for z = ¢ /|¢]|
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Appendix

James-Stein |l

James-Stein Return Constraint
o The James-Stein recipe to improve the sample mean estimate m = T is given for any p-vector
M # m by
,/2
mig=cm+(1—cM, ¢c=1— —m ———— 5
s -9 TR ®
where G
tri
2= #7 (6)
ny — K
and nj is the number of nonzero eigenvalues of S in PCA recipe.
Step 2: The shrinkage target M maybe any p-vector, but commonly be the grand mean
(m, e) a
M= (S mi/p)e. 0
(e, €) )
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Appendix

James-Stein Il|

James-Stein Recipe

o For any estimate p(G) that is not a scalar matrix, we replace Y by
Y = p(G)"Y2(R — [F, 7, -+ ,7]), where p(G)~1/2 is diagonal with

p(6)7 Y% = 1/ /o(Gs

e Recompute H following S = HHT + G but from the reweighted sample covariance matrix S
using above updated Y.

e Take mjs in Eqb and assemble the matrix
A= p(G) " (ms e). )
e Compute the pesudo-inverse Al = (AT A)flAT, and take v2 in Eq 7, we define the variables
M=AATH J=H-MT(H-M) c=1-22"1 9)
e The James-Stein estimator for H is
Hjs = HC+ M(I — C) (10)

for C a K X K matrix and M a p X k matrix.
G The James-Stein estimator for X is

15 = p(G)/ 2 (HisHs + Np(G)/2. (1)
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