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Overview

The Markowitz mean-variance portfolio is obtained from solving
the following:

min
ω

w⊤Σw

subject to µ⊤w ≥ α
e⊤w = 1,

(1)

where e is a p-vector of ones, α is a return target. µ is (true)
means of asset returns and Σ is (true) covariance of asset returns.

Goal: determine w = (w1,w2, · · · ,wp)
⊤.
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Efficient Frontier
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Solution to Markowitz Problem

Use the Lagrange multipliers, the solution to Eq 1 is:

w = γeΣ
−1e + γµΣ

−1µ. (2)

Case 1: µ⊤Σ−1e
e⊤Σ−1e

≥ α:

Pick the minimum variance solution w = Σ−1e
e⊤Σ−1e

.

Case 2: µ⊤Σ−1e
e⊤Σ−1e

< α:

Pick the tangency portfolio w = 1
2Σ

−1(λ1µ+ λ2e) with
A = e⊤Σ−1e,B = e⊤Σ−1µ,C = µ⊤Σ−1µ.
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Quick Discussion

Denote p × n matrix R as asset return.

µ: vector of estimated returns.
Use m to denote the estimate.
Common estimates:

Sample mean: m = (R1,R2, · · · ,Rp)
⊤ with R i =

1
n

∑n
j=1 Ri,j

James-Stein return constraint.

Σ: covariance matrix of the asset returns.
Use Σ̂ to denote the estimate.
Sample covariance: S .
Common estimates:

PCA estimator
James-Stein shrinkage estimator
Ledoit-Wolf shrinkage estimator
Other estimators (to be listed later).
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Testing Framework I

rt Return to p assets on time (month) t
Rt Rt = (rt−n+1, · · · , rt) a p×n matrix of returns at time t with lookback

window of size n
Yt Rt centered, Yt = Rt − [r t , · · · , r t ] with rt be the p-vector average of

the n columns of Rt . Needed to compute sample covariance matrix
ŵt Estimated portfolio weights at time t
N The number of times t is incremented until a year goes by, e.g. rt in

units of monthly return implies N = 12
Pt Set of times counting back from t

Table: Common Notations in Testing Framework
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Testing Framework II
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PCA I

1 Eigen decomposition on centered sample covariance matrix S .

2 Write sample covariance matrix as sum of two parts: the first
part consists of K leading eigenpairs, the second part is the
reminder.

S = Hp×kH
⊤
p×k + G

3 The specific risk estimate ∆:

∆ = diag(G )

Check Appendix 16 for details.
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JSE I

1 Estimate return constraint vector µ using James-Stein
shrinkage.

2 Apply shrinkage to the eigenvectors.

HJS = HC +M(I − C ),

where Mp×k is shrinkage target based on constraints µ and e,
and Ck×k is the shrinkage matrix.

Check Appendix 18 for details.
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Numerical Model

r = µ+ BX + ϵ

Number of factors: 7.

µ ∈ Rp: Expected security return with mean 6.28.

α = 8: the portfolio return shall exceed 8.

Bp×7: Factor loading (e.g: market factor, size factors,
sector-specific factor, etc.) Check Appendix 13 for details.

x ∈ R7: Factor return, Gaussian distributed

ϵ ∈ Rp: Idiosyncratic risk, Gaussian distributed

We collect observations of r in Rp, forming a data matrix for
analysis.
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Numerical Results

p PCA V (t) James-Stein V (t)
500 7.82 6.74
1000 7.08 6.36
2000 7.18 5.07
3000 5.96 3.74

100000 5.61 0.84

Table: Portfolio volatility statistics (n = 125, µ = 8, 100 investment
dates)
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Appendix

Appendix
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Appendix

Factor Loadings I
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Appendix

Factor Loadings II
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Appendix

Factor Loadings III
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Appendix

PCA I

PCA Assumption

p >> n

Low Effective Rank (K << p)

Sparsity or Low-Rank Structure (the covariance matrix
can be well approximated by a matrix with fewer
non-zero eigenvalues).

Noiseless Data or Low Noise

Zhuoli Jin PSTAT UCSB



Appendix

PCA II

PCA Recipe

1 Compute Sample Covariance Matrix: the sample covariance matrix S is
computed as S = 1

n
YY⊤.

2 Perform Spectral Decomposition: decompose S into its eigenvalues and
eigenvectors

S = VΛVT ,

where Λ = diag{λ1, λ2, · · · , λn} with λ1 ≥ λ2 ≥ · · · ≥ λn, and
V = (v1, v2, · · · , vn) with each vi the corresponding eigenvector of λi

3 Select Principal Components: choose the top K PCs – so we have VK

and ΛK . Now we have S = HHT + G with HH⊤ = VKΛKV
⊤
K and G

being the residuals.

4 Construct PCA-Based Covariance Matrix:

Σ̂PCA = HH⊤ + ρ(G), (3)

with ρ() being the regularization operator on G to make Σ̂ of full rank,
for example

ρ(G) = Diag(G). (4)
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Appendix

James-Stein I

JSE Assumption

1 n is fixed, p → ∞.

2 0 < lim infp↑∞ inf|v|=1⟨v,ΣU v⟩ < lim supp↑∞ sup|v|=1⟨v,ΣU v⟩ < ∞

3 limp↑∞(B⊤B)/p exists as an invertible K × K matrix with fixed K ≥ 1.

4 limp↑∞(H⊤B)/H exists as an invertible K × K matrix with fixed K ≥ 1 for H in Eq??.

5 For ζ ∈ Rp non vanishing and residing entirely in Col(H), denote ζB = H(H⊤H)−1H⊤B,

lim sup
p↑∞

|ζB |/|ζ| < 1, and lim inf
p↑∞

|ζ| ≠ 0.

6 For any g ∈ Rn , J = I − gg⊤

|g|2
, F ,U satisfies the following:

1.F and U are latent
2. K is known and the number of nonzero eigenvalues of sample covariance matrix S is larger
than K .
3.F⊤JF is invertible almost surely.

4.limp↑∞ U⊤U/p = γ2I almost surely for some γ > 0

5. lim supp↑∞

∥∥∥JU−1B
∥∥∥ /p = 0 almost surely for some matrix norm ∥·∥ on Rn×K

6. lim supp↑∞ |JU⊤z|/√p = 0 almost surely for z = ζ/|ζ|
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Appendix

James-Stein II

James-Stein Return Constraint

1 The James-Stein recipe to improve the sample mean estimate m = r is given for any p-vector
M ̸= m by

mJS = cm + (1 − c)M, c = 1 −
ν2

(m − M)⊤(m − M)
, (5)

where

ν
2 =

tr(G)

n+ − K
, (6)

and n+ is the number of nonzero eigenvalues of S in PCA recipe.

Step 2: The shrinkage target M maybe any p-vector, but commonly be the grand mean

M =
⟨m, e⟩
⟨e, e⟩

e = (

p∑
i=1

mi/p)e. (7)
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Appendix

James-Stein III
James-Stein Recipe

1 For any estimate ρ(G) that is not a scalar matrix, we replace Y by

Y = ρ(G)−1/2(R − [r, r, · · · , r ]), where ρ(G)−1/2 is diagonal with

ρ(G)
−1/2
ii = 1/

√
ρ(G)ii .

2 Recompute H following S = HH⊤ + G but from the reweighted sample covariance matrix S
using above updated Y .

3 Take mjs in Eq5 and assemble the matrix

A = ρ(G)−1/2(mjs e). (8)

4 Compute the pesudo-inverse A† = (A⊤A)−1A⊤, and take ν2 in Eq 7, we define the variables

M = AA†H J = (H − M)⊤(H − M) C = I − ν
2J−1

. (9)

5 The James-Stein estimator for H is

HJS = HC + M(I − C) (10)

for C a K × K matrix and M a p × k matrix.

6 The James-Stein estimator for Σ is

Σ̂JS = ρ(G)1/2(HJSH
⊤
JS + I )ρ(G)1/2. (11)
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