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Introduction

In 1952, Harry Markowitz launched modern finance by
framing portfolio construction a tradeoff between portfolio
expected return and risk, and providing a mathematical
mechanism to optimize portolios
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Introduction

Evidently realizing that classical statistics would not
provide what he needed, Markowitz considered alternative
ways to estimate optimization inputs

Perhaps there are ways, by combining statistical techniques and the judgment of
experts, to form reasonable probability beliefs µij , σij One suggestion as to
tentative µij , σij is to use the observed µij , σij for some period of the past. I
believe that better methods, which take into account more information, can be
found. I believe that what is needed is essentially a “probabilistic”reformulation
of security analysis. I will not pursue this subject here, for this is “another story.”
It is a story of which I have read only the first page of the first chapter.

Harry Markowitz (1952)
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Introduction

Big Idea #1: Since they conform to empirically observed
properties of financial data and reduce dimension, factor
models are used almost universally to generate inputs to
mean-variance optimization

The return generating process

r = βf + ϵ

implies the expected returns:

E[r] = βE[f ] + E[ϵ]

and covariance matrix:

Σ = βFβ⊤ +∆

Returns or excess returns r are the sum of factor returns f scaled by exposures β and specific returns ϵ, which are pairwise uncorrelated and uncorrelated
with factor returns. Returns are observable but the factor and specific components are not. The factor and (diagonal) specific return matrices are denoted
by F and ∆.
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Introduction

Big Idea #2: Random matrix theory provides tools to
estimate factor model parameters in high dimensions when
data are scarce.
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Spectral decomposition and covariance matrix estimation

Spectral decomposition and covariance matrix estimation
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Spectral decomposition and covariance matrix estimation

Eigenvalues and eigenvectors of noisy sample return
covariance matrices for large cap equities provide the
components of factor-based covariance matrices used in
Markowitz optimization

We identify salient characteristics of sample return covariance matrices, and
provide some answers to these questions:

How many spiked eigenvectors (factors) do we typically see, and how does
that number vary over time.
How do spiked eigenvalues depend on the number of securities in the
estimation universe?
How are the entries of spiked eigenvectors distributed?
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Data and Methodology

Data and Methodology
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Data and Methodology

Data

Our dataset consists of an approximation of the Russell 3000 constituents
based on the BlackRock iShares ETF IWV (Oct 09, 2024)
Using WRDS Center for Research in Security Prices data, we retrieved the
Daily Total Return (DlyRet) and Daily Market Capitalization (DlyCap) from
January of 2003 to December of 2023 for each Ticker obtained from the
above ETF.
Securities without complete history are dropped, we have an effective
maximum of 2340 securities.
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Data and Methodology

Methodology Overview

Covariance Matrix Estimation:
Look-back window of 126 trading days
Sample covariance matrix computed for each window

Spectral Analysis:
Spectral decomposition of sample covariance matrices
Focus on leading eigenvalues and corresponding eigenvectors
Comparison between market-cap sorted and ”randomly” selected stocks

Time Period Analysis:
Eight distinct 126-day periods (2019-2022)
Attention paid to market stress periods (e.g., 2020 pandemic)
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How many factors?

How many factors?
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How many factors?

How many factors

How many spiked eigenvectors (factors) do we typically see
How does that number vary over time
Eight time periods of 126 days each are chosen (2019 - 2022)
The spectrum of eigenvalues is used to identify the number of factors
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How many factors?

Observation over 8 time periods (Part I)
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How many factors?

Observation over 8 time periods (Part II)
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How many factors?

Observation over 8 time periods

Period Factor Number
2019.1 - 2019.6 3
2019.7 - 2019.12 5
2020.1 - 2020.6 1
2020.7 - 2020.12 3

Period Factor Number
2021.1 - 2021.6 5
2021.7 - 2021.12 2
2022.1 - 2022.6 3
2022.7 - 2022.12 2

In normal cases, the number of outstanding factors is around 4
In a financial crisis, the number of factor concentrates to one
e.g. the pandemic (2020.1 - 2020.6)

Question: Is this a good way to count factors? Can we have a more systematic
approach?
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How do Eigenvalues grow with respect to the number of securities
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How do Eigenvalues grow with respect to the number of securities

The leading eigenvalue shows roughly affine dependence on
the number of securities p

Market cap

Random stocks

Covariance matrix estimated EOY 2021 using trailing 126 days of data. Stocks are sorted by
market capitalization (orange line) or randomly drawn for each p (blue box plots).
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How do Eigenvalues grow with respect to the number of securities

Over 8 time periods (Part I)

Market cap

Random stocks
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How do Eigenvalues grow with respect to the number of securities

Over 8 time periods (Part II)

Market cap

Random stocks
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How do Eigenvalues grow with respect to the number of securities

Fit into a one-factor model

Suppose returns follow a one-factor, homogeneous specific risk model:

r = βf + ϵ

β is a p-vector of exposures
f is the factor return
ϵ is a p-vector of mean 0 specific returns
The population covariance matrix of r is given by:

Σ = σ2ββ⊤ + δ2I

σ and δ are factor and specific volatility and I is the p × p identity matrix
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How do Eigenvalues grow with respect to the number of securities

Fit into a one-factor model

We draw βs from a normal distribution with mean 1 and standard deviation τ

β is the leading eigenvector of Σ and the eigenvalue is given by:

λ2 = σ2|β|2 + δ2 ≈ σ2p(1 + τ2) + δ2

The approximation should improve as p grows
If we fit this to the previous plot of EOY 2021 we’ll have:

σ2(1 + τ2) = Slope ∗ 252 = 0.040

δ2 = Intercept ∗ 252 = 0.160 δ = 0.399

τ can be calculated from the first eigenvector (normalized to mean 1)

τ2 = 0.27 Therefore, σ2 = 0.0317 σ = 0.178
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How do Eigenvalues grow with respect to the number of securities

How do σ and δ change over time

Period σ δ
2019.1 - 2019.6 0.138 1.778
2019.7 - 2019.12 0.129 2.123
2020.1 - 2020.6 0.545 4.982
2020.7 - 2020.12 0.196 2.008
2021.1 - 2021.6 0.187 1.825
2021.7 - 2021.12 0.178 0.399
2022.1 - 2022.6 0.297 0.269
2022.7 - 2022.12 0.270 0.830

Fitted σs are in a reasonable range and are close to the ones used in reality
Fitted δs are larger than expected (due to the hidden factors)
σ and δ explodes in financial crisis (also true for 2008)
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How do Eigenvalues grow with respect to the number of securities

We need more factors
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How do Eigenvalues grow with respect to the number of securities

σ and δ implied by a four factor model.

Consider the four-factor model where we have

r = Bf + ϵ

B = [β1, β2, β4, β4], our matrix of factor exposures
f = [f1, f2, f3, f4] our 4-vector of factor returns
With covariance matrix

Σ = BΦB⊤ + δ2I

where Φ is our 4× 4 covariance matrix of factor returns.
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How do Eigenvalues grow with respect to the number of securities

How do σ and δ change over time (4 factor)

Period τ2 σ1 δ
2019.1 - 2019.6 0.2753 0.1517 1.3722
2019.7 - 2019.12 0.3846 0.1442 1.4655
2020.1 - 2020.6 0.1557 0.5710 2.4866
2020.7 - 2020.12 0.5942 0.2097 1.8080
2021.1 - 2021.6 0.3527 0.1945 1.7617
2021.7 - 2021.12 0.2759 0.1782 1.5867
2022.1 - 2022.6 0.4117 0.2927 1.8245
2022.7 - 2022.12 0.2720 0.2670 1.9680

Table: Four-Factor Model (Factor 1) Parameters by Period
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How do Eigenvalues grow with respect to the number of securities

How do σ and δ change over time (4 factor) cont.

Period σ1 σ2 σ3 σ4 δ
2019.1 - 2019.6 0.1517 0.0729 0.0652 0.0584 1.3722
2019.7 - 2019.12 0.1442 0.1129 0.0798 0.0775 1.4655
2020.1 - 2020.6 0.5710 0.2160 0.1913 0.1627 2.4866
2020.7 - 2020.12 0.2097 0.1516 0.1280 0.1015 1.8080
2021.1 - 2021.6 0.1945 0.1470 0.1438 0.1140 1.7617
2021.7 - 2021.12 0.1782 0.1102 0.0723 0.0694 1.5867
2022.1 - 2022.6 0.2927 0.1280 0.1052 0.0856 1.8245
2022.7 - 2022.12 0.2670 0.1123 0.0944 0.0873 1.9680

Table: Four-Factor Model: Factor σ Values and δ by Period
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How are the entries of spiked eigenvectors distributed

How are the entries of spiked eigenvectors distributed
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How are the entries of spiked eigenvectors distributed

How are the entries of spiked eigenvectors distributed

Look at how the mean and variance of spiked eigenvectors change over time
(before normalization)
Normalize the fist factor to mean 1
Z-score normalize the rest factors
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How are the entries of spiked eigenvectors distributed

A look at how the mean and variance of spiked
eigenvectors change over time (before normalization)

The first factor has an outstanding mean, while the rest are rather close to 0
The standard deviation of the first factor is lower and responses more to
market changes (e.g. 2020.1 - 2020.6)
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How are the entries of spiked eigenvectors distributed

Normalize the first factor to mean 1 (Part I)
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How are the entries of spiked eigenvectors distributed

Normalize the first factor to mean 1 (Part II)
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How are the entries of spiked eigenvectors distributed

Z-score the second factor (Part I)
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How are the entries of spiked eigenvectors distributed

Z-score the second factor (Part II)

(UC Berkeley) Spectral Properties of Matrices Fall 2024 35 / 40



How are the entries of spiked eigenvectors distributed

Z-score the third factor (Part I)
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How are the entries of spiked eigenvectors distributed

Z-score the third factor (Part II)
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How are the entries of spiked eigenvectors distributed

Z-score the fourth factor (Part I)
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How are the entries of spiked eigenvectors distributed

Z-score the fourth factor (Part II)
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How are the entries of spiked eigenvectors distributed

Limitations and work in progress

Further interpreting the histograms of eigenvectors
Siamak idea: Instead of only looking at how the mean and variance of spiked
eigenvectors change over time, can we use ML (say random forest) to make
predictions from the histograms? I guess this may entail computing metrics
from the histograms and training the ML alg on a bunch of histogram
metrics. I’m not sure how much people have done this in this context.
Include or exclude outliers in the dataset
Look at the plots on the same horizontal scales and look at the four factor
panels for one date at a time
And much more to do...
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