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The data



Wharton Research Data Services (WRDS).
https://wrds-www.wharton.upenn.edu
— Access through UCLA/UCB libraries.

- 1974-2024 time-series of US equity returns (+ market caps).
— The frequency is daily (return).

There is missing data (e.g., acquisition, merger, bankruptcy).

- Typical set is 3000 stocks with the largest market cap.

The constituents of this group changes over time.


https://wrds-www.wharton.upenn.edu

We observe a vector r; € R” on date j.

D is the number of stocks/securities/assets.

- I = (rlj,...,rpj)T

We observe r; on n dates.

(p x n) data matrix R = (rij)1<i<p.1<j <n-



rij is the return of stock i on date ;.
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Observing R we construct a portfolio w € R”.

w = (wy,...,Wp)

— Ww; IS the investment is stock i.

- Zzpzl w; = 1 (wlog)
- w; > 0 (long position) and w; < 0 (short position).



Construct/invest stock portfolio w" based on observing RV,
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After m time units a return M; on portfolio w" is realized.

We also have m new data points and a new data set R® based
on which we can make the next stock portfolio w'®.
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Return M, on portfolio w® is realized, etc ...



Main projects




Empirical studies.

— Compare the portfolio return time series My, M,, . . ., for
many different methods of constructing w'),

— Study the spectral properties of the data matrices RY) to
identify structure and build better asset return models.

Benchmarks portfolios.

— Equally weighted portfolio, i.e. w; = 1/ p.
~ Market cap weighted portfolio, i.e, w; = cap; /Y 1_ cap;

- Mean-variance optimized portfolios.



Cumulative returns (%) to the equally weighted portfolio
(1974-1924; scaled for comparison with another method).

Cumulative Return: Top 3000 Stocks By Marketcap, n=126. Min Vol
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WRDS data on top 3000 stocks by market cap.

Investments are monthly.



Return volatility (%) to the equally weighted portfolio

(1974-1924; scaled for comparison with another method).

Portfolio Volatility: Top 3000 Stocks By Marketcap. n=126. Min Vol
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WRDS data on top 3000 stocks by market cap.

Investments are monthly.

—— Equal Weight: realized vol=19.57%



Mean-variance optimization




Since Markowitz (1952), quantitative investors have
constructed portfolios with mean-variance optimization.

A

o)

- A simple quadratic program given a covariance matrix X.

— We can make two curves (in-sample and out-of-sample).



The Markowitz quadratic program.

min (w, X w)
weR?

subject to:

(m,w) > «a,

(e,w) = 1.
(every w; > 0

. etc.)

p
- {x,y) = 2 i_1 Xiyi-
Y isa(p x p)covariance matrix of stock returns.

- m € R7 js the estimate of expected returns.

a € R is the target portfolio return.
-—e=(1,...,1) e R?



The Markowitz quadratic program.

min (w, X w)
weR?

subject to:

(m,w) > «,

(e,w) = 1.
(every w; > 0

. etc.)

'The Markowitz optimization enigma entails the observation
that “mean-variance optimizers are, in a fundamental sense,
estimation-error maximizers” — Michaud (1989).

— The estimation error sits in m and X .
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Methods/metrics/parameters




We will use the following portfolio metrics.

— Portfolio volatility.
— Portfolio concentration.

— Portfolio return.
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We compare the following 3 methods.

~ Principal component analysis (PCA).!
— James-Stein-Markowitz (JSM) corrected PCA.

— Ledoit-Wolf constant correlation shrinkage (LW).

'We will take a diagonal residual for PCA.
2We use the diagonal residual from PCA as weights for JS
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RECIPE FOR THE COVARIANCE MODEL

. With 7 as above, let R be the (p x n) matrix with ¥ in every column, to
center the data, i.e,

Y=R-R. (8)

. For the centered sample covariance matrix § = Y'Y T /n, write its spectral
decomposition as

S =3 (emdhh =HHT + N 9)

where the sum is over all eigenvalue/eigenvector pairs (42, h) of S, H is a
p X k matrix with every column of the form sh sourced from the k largest
eigenvalues 42, and N =8 — HH'.

. The specific risk estimate A in (5) sets all the off-diagonal elements of N to
Zero, i.e.,

A = diag(N). (10)

. The PCA covariance matrix is Lpey = HH T + A.

- = . .. . P N - -
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RECIPE FOR THE COVARIANCE MODEL

. For any estimate A (e.g., (10)), centering and weighting the data, we set
Y =A"Y*(R-R) (15)

where A=1/2 is diagonal with A;l/z = 1//A;; and R is the matrix in (8).
. Recompute H following (9) but from the re-weighted sample covariance S
that uses (15). Set,

H=AY?H. (16)

. The JsM estimator of the weighted eigenvectors H computes a (k X k)-matrix
valued shrinkage parameter,

C=I-vJ', J=(H-M"AYH-M), (17)

where /2 is the variance of the noise and M # H is a (px k)-matrix shrinkage
target.®
. The JsM estimator is analogous to (12) but with matrix valued C' and M.

Hy = HC + M(I -C) (18)
. The variance 12
covariance S.

. A shrinkage target M analogous to (14) uses a (px 2)-matrix A = (5 €) as

is computed per (13) but with N from the reweighted sample

M=AATATTA)TATATIH. (19)

. The basic JSM covariance model is X5y = HJSMHJI.M + A.

“Here, # is in the sense that the columns spaces of the two matrices are not identical.
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We can make choices for the following parameters.

— The number of factors k.

— The number of return observations n.
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Minimum volatility




Analysis of k=1

Portfolio Volatility: Top 3000 Stocks By Marketcap, n=126, k=1 (Min. Vol}

Equal Weights: avg. vol = 19.57

PCA + Diagonal: avg. vol = 8.87
Diagonal Weighted JSE: avg. vol = 8.52
LW: avg. vol = 7.58
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Analysis of k=4

Portfolio Volatility: Top 3000 Stocks By Marketcap, n=126, k=4 (Min. Vol)
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Analysis of k=8

Portfolio Volatility: Top 3000 Stocks By Marketcap, n=126, k=8 (Min. Vol)
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Analysis of k=16

Portfolio Volatility: Top 3000 Stocks By Marketcap. n=126, k=16 (Min. Vol)
Equal Weights: avg. vol = 19.57
PCA + Diagonal: avg. vol =7.9
Diagonal Weighted JSE: avg. vol =7.42
LW: avg. vol =7.58
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Cumulative Return: Top 3000 Stocks By Marketcap, n=126, k=16 (Min. Vol)
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Analysis of k=32

Portfolio Volatility: Top 3000 Stocks By Marketcap
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Analysis of k=64

Portfolio Volatility: Top 3000 Stocks By Marketcap, n=126, k=64 (Min. Vol)
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