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The data set



Wharton Research Data Services (WRDS).
https://wrds-www.wharton.upenn.edu
— Access through UCLA library.

- 2003-2023 time-series of US equity returns (+ market caps).
— The frequency is daily (return).

There is missing data (e.g., acquisition, merger, bankruptcy).

We study the 3000 stocks with the largest market cap.

The constituents of this group changes over time.


https://wrds-www.wharton.upenn.edu

The testing framework



We observe a vector r; € R” on date j.

D is the number of stocks/securities/assets.

- I = (rlj,...,rpj)T

We observe r; on n dates.

(p x n) data matrix R = (rij)1<i<p.1<j <n-



rij is the return of stock i on date ;.
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Observing R we construct a portfolio w € R”.

w = (wy,...,Wp)

— Ww; IS the investment is stock i.

- Zzpzl w; = 1 (wlog)
- w; > 0 (long position) and w; < 0 (short position).



Observing R we construct a portfolio w € R”.
w = (wy,...,Wp)
— w; € R is the investment is stock i with Y \_, w; = 1.
In-sample portfolio return

— Forthe n column of R, i.e., r,, we can compute

Fw-in = (rna w) = lerinwi-

— This is the in-sample portfolio return and we are in full
control of this number (i.e. all of R is available).

Out-of-sample portfolio return

- Fixing w, we wait for some period m and compute the return,

Fw-out = <rn+m, w) - Z,P:lri(n—i—m)wi .

— This is the out-of-sample portfolio return and we have no
control of this number (i.e., 1,1, is not observed at time n).



Both ry.i, and 7,y are random variables (RVs).

— Tw-out May be viewed as a RV conditional on R.

— T'w.in may be viewed as a RV that is a function of R.

Both a mean, variance, . . ., distribution (histogram).

Using historical data, we can obtain a time-series for each.
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— This will depends on the choices of p, n and m.

- p is the number of variables (stocks).

— n is the observation window (training data) size.

- m is step size the window is shifted by.

— These matter! e.g, m > n, the windows are not overlapping.
- p>nvsp =<n.

- size of n is related to “stationarity” assumptions on the data.



The first window that leads to rﬁ}_{,ut and rﬁ}_)m.
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Testing framework inputs.

- Historical data (e.g, WRDS).
- p,n,m and M (method to compute portfolio weights w ).

- An example of M is principal-component analysis and
mean-variance optimization (both upcoming).

Testing framework outputs.

(1) (2 (3) ( )
w -out» rw-outv rw-out’ c w -out and Samefor rw-iﬂ'

- Some metric that evaluates the performance of M.

- Example metrics are the out-of-sample return and variance.
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and their “running” versions as time-series.

Benchmarks portfolios.

- Equally weighted portfolio, i.e. w; = 1/ p.
— Market cap weighted portfolio, i.e, w; = cap; /Y 1_ cap;



Histogram of rD @ L0 e r&) for 3 methods M.
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This is simulated (not empirical) data!
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Mean-variance optimization




Since Markowitz (1952), quantitative investors have
constructed portfolios with mean-variance optimization.

A

o)

- A simple quadratic program given a covariance matrix X.

— We can make two curves (in-sample and out-of-sample).
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Harry Markowitz

Born: August 24, 1927

Economist

+1990 Nobel Prize Recipient in
Economic Sciences for developing
the modern portfolio theory

+ His work popularized concepts
like diversification and overall portfolio
risk and return, shifting the focus away
from the performance of individual stocks

2 Investopedia

Portfolio Selection Revisited (2024)
In honor of Harry Markowitz, 1927-2023.
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http://www.cdar.berkeley.edu/sites/default/files/publications/portfolio_selection_revisited.pdf

The Markowitz quadratic program.

min (w, X w)
weR?

subject to:

(m,w) > «a,

(e,w) = 1.
(every w; > 0

. etc.)

p
- {x,y) = 2 i_1 Xiyi-
Y isa(p x p)covariance matrix of stock returns.

- m € R7 js the estimate of expected returns.

a € R is the target portfolio return.
-—e=(1,...,1) e R?

12



The Markowitz quadratic program.

min (w, X w)
weR?

subject to:

(m,w) > «,

(e,w) = 1.
(every w; > 0

. etc.)

'The Markowitz optimization enigma entails the observation
that “mean-variance optimizers are, in a fundamental sense,
estimation-error maximizers” — Michaud (1989).

— The estimation error sits in m and X .
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The target return here is « = 8.5. The standard deviation of the
optimal portfolio return (with knowledge of true X') is 2.78.

The histograms above have 4.11, 6.85 and 12.2.
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Histogram of rD B O , rgi)ut for 3 methods M.
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Similar methods run on empirical data! (¢ = —o0)
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Simulated vs empirical data




In simulation, R follows some statistical model.

— Factor model.
R=p+BF +¢&

n € R? - expected return.

F € R™X _ factor returns.

B € RP*K _ factor exposures.

E € RP*" —idiosyncratic return (error).

In this model B and . are estimated from observations of R.

Distributional assumptions are needed for F and &.

- A graphical model is another example.
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Given (p x n) data matrix R.

— The(p x p)sample covarianceis Q = RR" /n
(uncentered).
— The sample meanist € R? (average of columns of R).

— Subtract r from each columns of R to obtain Y
(a (p X n) centered data matrix).

— The(p x p) centered sample covarianceis S = YY" /n.

The statistical properties of S (or Q) are examined via the
spectral decomposition (eigenvalues 32 and eigenvectors ).

S=Y shh'
(32,h)

where Sh = 3%h and h has unit length, 1 = |h|?> = (h, h).

For Y (or R), the similar procedure may compute the singular

value decomposition, e.g., ¥ = > ) ouv'.
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Useful empirics.

— Compute all the eigenvalues of a simulated and empirical S
to show the differences.

- Compute the eigenvector for the largest eigenvalue of a
simulated and empirical S and plot the histogram of those
entries.

— elc.

18



Eigenvalue histogram for 2003-2023 with 1273 stocks.
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Density

Eigenvalue histogram for 2003-2023 with 1273 stocks.
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Eigenvalue histogram for 2003-2023 with 1273 stocks.
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Eigenvalue histogram for 2003-2023 with 1273 stocks.
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Methods




Principal component analysis (PCA).

- Starting with the spectral decomposition of S,

S=Y s#hh" =HH'+G
(2.h)
where H isa p x K matrix (K principal components).

- G isa p X p residual which is often regarded as noise on
theoretical grounds (i.e. its eigenvalues are hypothesized to
follow the Marchenko-Pastur distribution).

- Let A = diag(G), the matrix G with zeros off-diagonal.

— The PCA estimate of the covariance is given by
Y=HH' +A.

Note, H has K columns of the formn = 3h where 3% is an
eigenvalue of S with eigenvector h.
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James-Stein for PCA (plain version).
— We update the PCA estimate H as follows.

where F = AAY H for A™ the pseudo-inverse of A, any
p X k matrix (for mean-variance we put the constraint
vectors m and e as columns), and

C=1-VvJ"' J=H-MT(H-M),

forv? = trace(G) with n . is the number of nonzero
ezgenvalues of the sample covariance S.
More refined versions to be added ...
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The Ledoit-Wolf family of estimators.

— Starting with the sample covariance S we return
Y=cS+(A-0)F

where F is a target matrix and c is a shrinkage intensity.
- F = I adjusts only the eigenvalues of S.

- F, constant correlation adjusts eigenvalues and eigenvectors
(does well on empirical data but poorly in simulation).
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Running volatility plot for several methods.

daily Data. Top 3000 Stocks By Marketcap, n=126: Estimate k =110

Annualized Volatility (%)

2004 2008 2012 2016

2024

26



Theoretical assumptions vs practice




Metrics




(1) 2 3) (V)
w-outs Fw-outs Fi-outs - - - » Fo-out aNd same for r, 5, we can

look at the following metrics in- and out-of-sample.

Givenr

Running mean and volatility.

Sharpe and Sortino ratios.

Concentration metrics (e.g., Herfindahl index).

Portfolio turnover.
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Running concentration plot for several methods.

k=110, Correct 110 Factors: Concentration

10— JSE10: avg = 0.42
— PCA avg = 0.4
— IW: avg =088

09 = JSE10+D: avg = 0.79

—— JSE; 10+ diag(D): avg = 0.51
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Pitfalls with empirical data




Besides code bugs that always come up . . .

Missing data (selection bias).

Stock delisting and volatility (e.g. bankruptcy vs merger).

Limited history (1923- with 250 trading days per year).

Statistical properties of data is difficult to model (relevant for
theoretical assumptions on methods + simulations).
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Related Literature




General approaches to mean-variance weights.

— Covariance estimation.
— Robust optimization.

— Prorfolio weight shrinkage.
Examples of empirical work.

- Georgantas et al. (2024).
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