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The data set



Wharton Research Data Services (WRDS).
https://wrds-www.wharton.upenn.edu

– Access through UCLA library.

– 2003-2023 time-series of US equity returns (+ market caps).

– The frequency is daily (return).

– There is missing data (e.g., acquisition, merger, bankruptcy).

– We study the 3000 stocks with the largest market cap.

– The constituents of this group changes over time.
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The testing framework



We observe a vector rj 2 Rp on date j .

– p is the number of stocks/securities/assets.

– rj D .r1j ; : : : ; rpj />

– We observe rj on n dates.

– .p � n/ data matrix R D .rij /1�i�p;1�j �n.
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rij is the return of stock i on date j .

R D

0BBBBBBBB@

r11 r12 � � � r1n

r21 r22 � � � r2n
:::

:::
:::

:::
:::

:::
:::

:::
:::

rp1 rp2 � � � rpn

1CCCCCCCCA
:

Observing R we construct a portfolio w 2 Rp .

w D .w1; : : : ; wp/

– wi is the investment is stock i .

–
Pp

iD1 wi D 1 (w.l.o.g)

– wi � 0 (long position) and wi < 0 (short position).
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Observing R we construct a portfolio w 2 Rp .

w D .w1; : : : ; wp/

– wi 2 R is the investment is stock i with
Pp

iD1 wi D 1.

In-sample portfolio return

– For the n column of R, i.e., rn, we can compute

rw-in D hrn; wi D
Pp

iD1rinwi :

– This is the in-sample portfolio return and we are in full
control of this number (i.e. all of R is available).

Out-of-sample portfolio return

– Fixing w, we wait for some period m and compute the return,

rw-out D hrnCm; wi D
Pp

iD1ri.nCm/wi :

– This is the out-of-sample portfolio return and we have no
control of this number (i.e., rnCm is not observed at time n).
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Both rw-in and rw-out are random variables (RVs).

– rw-out may be viewed as a RV conditional on R.

– rw-in may be viewed as a RV that is a function of R.

Both a mean, variance, : : : , distribution (histogram).

Using historical data, we can obtain a time-series for each.

– r
.1/
w-out; r

.2/
w-out; r

.3/
w-out; : : : ; r

.N /
w-out and same for rw-in.

– This will depends on the choices of p; n and m.

– p is the number of variables (stocks).

– n is the observation window (training data) size.

– m is step size the window is shifted by.

– These matter! e.g., m � n, the windows are not overlapping.

– p > n vs p � n.

– size of n is related to “stationarity” assumptions on the data.
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The first window that leads to r
.1/
w-out and r

.1/
w-in.

R.1/
D

0BBBBBBBB@

r11 r12 � � � r1n

r21 r22 � � � r2n
:::

:::
:::

:::
:::

:::
:::

:::
:::

rp1 rp2 � � � rpn

1CCCCCCCCA
:

The second window (shifted by m) that leads to r
.2/
w-out and r

.2/
w-in.

R.2/
D

0BBBBBBBB@

r1.mC1/ r1.mC2/ � � � r1.nCm/

r2.mC1/ r2.mC2/ � � � r2.nCm/
:::

:::
:::

:::
:::

:::
:::

:::
:::

rp.mC1/ rp.mC2/ � � � rp.nCm/

1CCCCCCCCA
:
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Testing framework inputs.

– Historical data (e.g., WRDS).

– p; n; m and M (method to compute portfolio weights w).

– An example of M is principal-component analysis and
mean-variance optimization (both upcoming).

Testing framework outputs.

– r
.1/
w-out; r

.2/
w-out; r

.3/
w-out; : : : ; r

.N /
w-out and same for rw-in.

– Some metric that evaluates the performance of M .

– Example metrics are the out-of-sample return and variance.

�w-out D
1

N

NX
`D1

r
.`/
w-out ; �2

w-out D
1

N � 1

NX
`D1

.r
.`/
w-out��w-out/
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and their “running” versions as time-series.

Benchmarks portfolios.

– Equally weighted portfolio, i.e. wi D 1=p.

– Market cap weighted portfolio, i.e., wi D capi=
Pp

iD1capi
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Histogram of r
.1/
w-out; r

.2/
w-out; r

.3/
w-out; : : : ; r

.N /
w-out for 3 methods M .

This is simulated (not empirical) data!
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Mean-variance optimization



Since Markowitz (1952), quantitative investors have
constructed portfolios with mean-variance optimization.

– A simple quadratic program given a covariance matrix ˙ .

– We can make two curves (in-sample and out-of-sample).
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Portfolio Selection Revisited (2024)

In honor of Harry Markowitz, 1927–2023.
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TheMarkowitz quadratic program.

min
w2Rp

hw; ˙ wi

subject to:

hm; wi � ˛;

he; wi D 1:

(every wi � 0

: : : etc.)

– hx; yi D
Pp

iD1 xiyi .

– ˙ is a (p � p) covariance matrix of stock returns.

– m 2 Rp is the estimate of expected returns.

– ˛ 2 R is the target portfolio return.

– e D .1; : : : ; 1/ 2 Rp
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TheMarkowitz quadratic program.

min
w2Rp

hw; ˙ wi

subject to:

hm; wi � ˛;

he; wi D 1:

(every wi � 0

: : : etc.)

The Markowitz optimization enigma entails the observation
that “mean-variance optimizers are, in a fundamental sense,
estimation-error maximizers” – Michaud (1989).

– The estimation error sits in m and ˙ .
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Histogram of r
.1/
w-out; r

.2/
w-out; r

.3/
w-out; : : : ; r

.N /
w-out for 3 methods M .

The target return here is ˛ D 8:5. The standard deviation of the
optimal portfolio return (with knowledge of true ˙ ) is 2:78.
The histograms above have 4:11; 6:85 and 12:2.
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Histogram of r
.1/
w-out; r

.2/
w-out; r

.3/
w-out; : : : ; r

.N /
w-out for 3 methods M .

Similar methods run on empirical data! (˛ D �1)
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Simulated vs empirical data



In simulation, R follows some statistical model.

– Factor model.
R D � C BF>

C E

� 2 Rp – expected return.
F 2 Rn�K – factor returns.
B 2 Rp�K – factor exposures.
E 2 Rp�n – idiosyncratic return (error).
In this model B and � are estimated from observations of R.
Distributional assumptions are needed for F and E .

– A graphical model is another example.
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Given (p � n) data matrix R.

– The (p � p) sample covariance is Q D RR>=n

(uncentered).

– The sample mean is Nr 2 Rp (average of columns of R).

– Subtract Nr from each columns of R to obtain Y

(a (p � n) centered data matrix).

– The (p � p) centered sample covariance is S D Y Y >=n.

The statistical properties of S (or Q) are examined via the
spectral decomposition (eigenvalues s2 and eigenvectors h).

S D
X
.s2;h/

s2hh>

where Sh D s2h and h has unit length, 1 D jhj2 D hh; hi.

For Y (or R), the similar procedure may compute the singular
value decomposition, e.g., Y D

P
.�;u;v/ �uv>.
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Useful empirics.

– Compute all the eigenvalues of a simulated and empirical S

to show the differences.

– Compute the eigenvector for the largest eigenvalue of a
simulated and empirical S and plot the histogram of those
entries.

– etc.
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Methods



Principal component analysis (PCA).

– Starting with the spectral decomposition of S ,

S D
X
.s2;h/

s2hh>
D HH >

C G

where H is a p � K matrix (K principal components).

– G is a p � p residual which is often regarded as noise on
theoretical grounds (i.e. its eigenvalues are hypothesized to
follow the Marchenko-Pastur distribution).

– Let � D diag.G/, the matrix G with zeros off-diagonal.

– The PCA estimate of the covariance is given by

˙ D HH >
C �:

Note, H has K columns of the form � D sh where s2 is an
eigenvalue of S with eigenvector h.
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James-Stein for PCA (plain version).

– We update the PCA estimate H as follows.

Hjs D HC C F.I � C /

where F D AACH for AC the pseudo-inverse of A, any
p � k matrix ( for mean-variance we put the constraint
vectors m and e as columns), and

C D I � �2J �1 ; J D .H � M/>.H � M/;

for �2 D
trace.G/

nC�K
with nC is the number of nonzero

eigenvalues of the sample covariance S .
More refined versions to be added ...

24



The Ledoit-Wolf family of estimators.

– Starting with the sample covariance S we return

˙ D cS C .1 � c/F

where F is a target matrix and c is a shrinkage intensity.

– F D I adjusts only the eigenvalues of S .

– F , constant correlation adjusts eigenvalues and eigenvectors
(does well on empirical data but poorly in simulation).
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Running volatility plot for several methods.
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Theoretical assumptions vs practice



Metrics



Given r
.1/
w-out; r

.2/
w-out; r

.3/
w-out; : : : ; r

.N /
w-out and same for rw-in we can

look at the following metrics in- and out-of-sample.

– Running mean and volatility.

– Sharpe and Sortino ratios.

– Concentration metrics (e.g., Herfindahl index).

– Portfolio turnover.
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Running concentration plot for several methods.
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Pitfalls with empirical data



Besides code bugs that always come up : : :

– Missing data (selection bias).

– Stock delisting and volatility (e.g., bankruptcy vs merger).

– Limited history (1923– with 250 trading days per year).

– Statistical properties of data is difficult to model (relevant for
theoretical assumptions on methods + simulations).
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Related Literature



General approaches to mean-variance weights.

– Covariance estimation.

– Robust optimization.

– Prorfolio weight shrinkage.

Examples of empirical work.

– Georgantas et al. (2024).
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