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Spectrum of Linear Layers of Neural Networks



Tweaking the Weights

We first perform SVD on the p × n weight matrix W :

W = UΣV T = Up×qΣq×qV
T
n×q + Z ,

with the singular values in Σ sorted from greatest to smallest and
Z is the residual matrix. So

1

n
WW T =

1

n
UΣ2UT = HHT + N

where

H =
1√
n
Up×qΣq×q.

Here Up×q consists of the top q left singular vectors and Σq×q

consists of the top q singular values.



Tweaking the Weights

Provided that Z is noise, and that EW = BΛVT , then the left
singular vectors of HJS which is the JS correction of H will be a
better estimator of B then Up×q.



Tweaking the Weights

To correct the weights W , we apply JS correction to the space
spanned by the columns of H. Here we are not scaling any
directions (yet). Given priors v1, . . . , vl (linearly independent)
p-vectors, take A to be the matrix with the prior vectors as
columns.
The shrinkage target is given by

M = A(ATA)−1ATH

which is the projection of the columns of H to the space spanned
by the priors.



Tweaking the Weights

The variance of the noise is estimated by

ν2 =
Tr(N)

n+ − q

(
or

Tr(N)

n+ − (1 + n+
p )q

)

where n+ is the number of nonzero singular values. Our shrinkage
parameter is given by

C = I − ν2J−1, J = (H −M)T (H −M).

Our JS correction of H is given by

HJS = HC +M(I − C ).



Tweaking the Weights

We take S2 to be the largest q sample eigenvalues, i.e.

S2 = HTH =
1

n
Σ2
q×q.

We correct the singular values by taking

Φ = S2Ψ2, Ψ2 = I − ν2S−2

where S−2 is the inverse of S2. So the q corrected singular values
are given by

ΣJS ,q×q = (nΦ)1/2.

Many other eigenvalue shrinkages are possible.



Tweaking the Weights

To correct the weights W , we again apply SVD to HJS to get the
left singular vectors βJS .
We replace the top q left singular vectors of U in the SVD of W
by βJS to get a new matrix UJS .
The JS corrected weights WJS is given by

WJS = UJSΣV
T

without singular value corrections. With singular value corrections,
we have

WJS = UJSΣJSV
T .



JS corrections

Taking A = (e) which corresponds to taking the grand mean
shrinkage, without singular value corrections, we have

q 0 noise 1 2 3 4 5 6 7 8 9 10 11

Top1 72.04 0.13 72.05 72.14 72.08 72.07 71.98 72.05 71.94 71.65 71.95 71.81 71.77
Top5 90.21 0.53 90.22 90.31 90.21 90.20 90.10 90.16 90.04 89.72 89.92 89.94 89.67

q 12 13 14 15 16 17 18 19 20 21 22 23 24

Top1 71.76 71.67 71.62 71.91 71.90 71.80 71.50 71.82 71.63 71.59 71.84 71.50 71.47
Top5 89.29 89.65 89.42 89.75 89.68 89.41 89.00 89.84 89.08 89.11 89.45 89.11 88.37

With singular value corrections, we have

q 0 1 2 3 4 5 6 7 8

Top1 72.04 72.05 72.11 72.07 72.07 71.98 72.06 71.95 71.66
Top5 90.21 90.22 90.32 90.20 90.23 90.07 90.15 90.03 89.81



Leading eigenvector of input layer across epochs

To have a better sense on how to make such corrections, we
investigate how the eigenvectors evolve during training. We trained
three layered perceptrons for 100 epochs on the CIFAR-10 dataset,
with hyperparameters 3072,1024,256,10 and 3072,512,512,10.

After each epoch, we collect the leading eigenvector which lies on
a p − 1 dimensional sphere. We apply dimension reduction by
finding the best fitting 2-sphere.



Leading eigenvector of input layer across epochs



Leading eigenvector of hidden layer across epochs



Leading eigenvector of output layer across epochs



Fitting scores

There are two natural notions of variances in such a fit and the
sum of it would be called mixed variance following
Huckemann–Ziezold, the first being the RSS given by the sum of
the squared (Euclidean) distances between the original points and
the projection onto the 2-sphere.
The other variance, variance on the sphere is similar to the
Euclidean case, but we first have to define a notion of mean. A
point p ∈ S l is called a Frechet mean of the points x1, . . . , xn ∈ S l

if it minimizes the function:

p 7→
n∑

i=1

d2
S l (xi , p).

In most cases, the Frechet mean is unique.



Fitting scores

So now we can define the variance on the sphere given by the sum
of the squared distances between the projected points and the
Frechet mean µ. The mixed variance is then defined by:

Var =
k∑

i=1

d2
Rp(xi ,ProjS2xi ) +

k∑
i=1

d2
S2(ProjS2xi , µ).

Our fitting score is then defined as:

R2 = 1− RSS

Var
.



Fitting scores

Here are the S2 fitting scores:

Runs Input layer Hidden layer Output layer

0 0.9318 0.8741 0.8964
1 0.9254 0.7272 0.8427
2 0.9234 0.8477 0.8672
3 0.9387 0.9223 0.9629

If we focus on the input layer, and restrict to epochs 3-100 in run
0-2 and epochs 4-100 in run 3, we get S1 fitting scores 0.9502,
0.9169, 0.9128 and 0.9328 respectively.



Johnson–Lindenstrauss lemma

Given 0 < ϵ < 1, and N points x1, . . . , xN in Rn, and an integer
k > 8 lnN/ϵ2, there exists a linear map f : Rn → Rk such that

1− ϵ ≤
||f (xi )− f (xj)||2

||xi − xj ||2
≤ 1 + ϵ,

for i ̸= j .
What this means is that we can find maps that preserves pairwise
distances.



Crude benchmark

We performed 1000 random walks with 100 steps on a 3071
dimensional sphere and performed dimension reduction to the best
fit 2-sphere. We obtained their respective RSS and fitting scores
(inflated).



Bias vectors

We also performed PCA on the bias vectors of the neural networks.
Here are the variances explained in the first component:

Runs Input layer Hidden layer Output layer

1 0.9885 0.9851 0.9833
2 0.9881 0.9869 0.9883
3 0.9841 0.9823 0.9865



Future work

1. Run a lot more different examples with different architectures,
hyperparameters, optimizers, seeds

2. Examine the behavior of convex optimization problems and
see whether what we observe is just how optimization
algorithms operate

3. Examine also what happens to the other spiked eigenvectors,
our results seem to suggest that neural network training is low
dimensional which the recent work by Mao et al. also suggests

4. How does this help finding better targets to perform JS
corrections?


