Minimum Variance Portfolio Construction

Mats A. Nissen-Lie

Risk Seminar

11th of April 2025

Presentation Outline

- 1. Introduction
- 2. Method
- 3. Empirical Analysis and Results
- 4. Beta Analysis in Specific Market Conditions

1. Introduction

- What is a Minimum Variance Portfolio (MVP)?
- Why Russell 3000?
- Comparison of long-only vs. long-short portfolio
- This presentation follows the methodology and findings of Clarke, de Silva, and Thorley (2011).

Minimum Variance Portfolio Definition

$$\begin{split} \min_{\mathbf{w}} & \mathbf{w}^\top \Omega \, \mathbf{w} \\ \text{subject to} & \mathbf{1}^\top \mathbf{w} = 1, \\ & \mathbf{w} \geq 0 \quad (\text{long-only constraint}) \end{split}$$

Where:

- w is the vector of asset weights,
- Ω is the covariance matrix of asset returns

2. Method

- Covariance Estimation and Variance Calculation
- Beta and Idiosyncratic Variance Estimation
- Long-Short (LS) Portfolio Construction
- Long-Only (LO) Portfolio Construction

Covariance Estimation and Market Variance

- Daily stock returns used to estimate the covariance matrix.
- Ledoit–Wolf shrinkage improves accuracy by shrinking the sample covariance toward a structured target.
- Particularly effective in high-dimensional settings (3000 stocks).

Market Variance:

$$\sigma_{\rm M}^2 = {\rm w}_{\rm M}^{\rm T} \Omega {\rm w}_{\rm M}$$

- Ω : shrunk covariance matrix.
- *w_M*: market-cap weight vector.

One-Factor Model, Beta, and Idiosyncratic Variance

Single-Factor Model:

$$R_i = \alpha_i + \beta_i R_M + \epsilon_i$$

Beta Estimation:

$$\beta_i = \frac{(\Omega w_M)_i}{\sigma_M^2}$$

Idiosyncratic Variance:

$$\sigma_{\epsilon,i}^2 = \Omega_{ii} - \beta_i \sigma_M^2$$

- α_i : asset-specific intercept (alpha)
- β_i : sensitivity to market
- + $\sigma^2_{\epsilon,i}$: variance not explained by market

Long-Short (LS) Portfolio

Beta Threshold β_{LS} :

$$\beta_{\text{LS}} = \frac{\frac{1}{\sigma_{\text{M}}^2} + \sum \left(\frac{\beta_i^2}{\sigma_{\epsilon,i}^2}\right)}{\sum \left(\frac{\beta_i}{\sigma_{\epsilon,i}^2}\right)}$$

Weight Assignment:

$$\mathbf{w}_{i} = \frac{\sigma_{MV}^{2}}{\sigma_{\epsilon,i}^{2}} \left(1 - \frac{\beta_{i}}{\beta_{LS}}\right)$$

• Allows both positive and negative weights.

Methodology and findings of Clarke, de Silva, and Thorley (2011).

Long-Only (LO) Portfolio

Beta Threshold β_L :

$$\beta_{L} = \frac{\frac{1}{\sigma_{M}^{2}} + \sum_{i=1}^{k} \left(\frac{\beta_{i}^{2}}{\sigma_{\epsilon,i}^{2}}\right)}{\sum_{i=1}^{k} \left(\frac{\beta_{i}}{\sigma_{\epsilon,i}^{2}}\right)}$$

• Computed using the *k* selected stocks with $\beta_i \leq \beta_L$.

Weight Assignment:

$$w_i = \frac{\sigma_{MV}^2}{\sigma_{\epsilon,i}^2} \left(1 - \frac{\beta_i}{\beta_L}\right), \quad i = 1, \dots, k$$

• Stocks with $\beta_i > \beta_L$ are assigned weights of zero ($w_i = 0$).

Methodology and findings of Clarke, de Silva, and Thorley (2011).

Threshold Filtering: Calculations and Mistakes

Beta	Cumulative $eta_{\it L}$	Valid Sum?
-1.148	-49.817	False
-0.963	-36.584	False
÷	÷	÷
0.084	-257.916	False
0.085	113.806	True
0.087	78.486	True
÷	÷	÷
0.521	0.522	True
0.521	0.522	True
0.521	0.522	True
0.522	0.522	False
0.522	0.522	False

Filtered Stocks with Magic R_i to get Weight

	Beta	Cumulative $eta_{\it L}$	Valid Sum?	R _i	Valid R _i ?	Weight	
	-1.148	-49.817	False	12205.733	True	0.005	
	-0.963	-36.584	False	12252.104	True	0.002	
	÷	÷	:	÷	:	÷	
	0.084	-257.916	False	12972.067	True	0.010	
	0.085	113.806	True	12972.124	True	0.011	
	0.087	78.486	True	12971.894	True	0.003	
	÷	÷	÷	÷	÷	÷	
	0.521	0.522	True	130.408	True	0.001	
	0.521	0.522	True	109.244	True	0.001	
	0.521	0.522	True	0.456	True	0.001	
	0.522	0.522	False	-5.884	False	0.000	
Re	0.522	0.522	False	-28.840	False	0.000	
UNIVERSITY OF CALIFORNIA							

3. Empirical Analysis and Results

- Performance Comparison: MVP Long-Only, MVP Long-Short, and Market Portfolio.
- Rebalancing and Beta Ranges
- Diversification and Exposure Risk

Beta Ranges at Rebalance Dates

Diversification and Exposure Risk

Effective Number of Stocks

Long Exposure for LS Portfolio

4. Beta Analysis in Specific Market Conditions

- Why These Periods?
 - Turbulent Market (H2 2022) vs. Exuberant Market (H2 2020)
- Contextual Background:
 - Market Indices over these periods for context
- Beta and Volatility Analysis:
 - Box plots of betas and annualized volatility
- Volatility vs. Beta Relationship:
 - Visualizing beta thresholds
- Weights and Risk:
 - Security weights vs. betas
 - Security weights vs. idiosyncratic risk

Market Context

Exuberant Market H2 2020

Turbulent Market H2 2022

Beta Box Plots

Exuberant Market H2 2020

Turbulent Market H2 2022

Annualized Specific Volatility

Exuberant Market H2 2020

Turbulent Market H2 2022

Volatility vs. Betas

Exuberant Market H2 2020

 $\beta_{LS} = 1.095$ $\beta_{l} = 0.522$

Turbulent Market H2 2022

 $\beta_{\rm LS} = 1.141$ $\beta_{\rm L} = 0.392$

Security Weight vs. Betas

Exuberant Market H2 2020

Turbulent Market H2 2022

Security Weight vs. Idiosyncratic Risk

Exuberant Market H2 2020

Turbulent Market H2 2022

Top 10 Holdings: Long-Only vs. Long-Short (Long Side) 2020

Long-Only Portfolio

Holding	Weight
JUNIPER INDUSTRIAL HOLDINGS INC	1.35%
OSPREY TECHNOLOGY ACQ CORP	1.33%
UNION ACQUISITION CORP II	1.30%
CRESCENT ACQUISITION CORP	1.28%
EAST STONE ACQUISITION CORP	1.26%
ALUSSA ENERGY ACQUISITION CORP	1.25%
TIFFANY & CO NEW	1.25%
CHINA BIOLOGIC PRODUCTS HDS INC	1.24%
CITIC CAPITAL ACQUISITION CORP	1.24%
S C V X CORP	1.22%

Long-Short Portfolio (Long Side)

Holding	Weight
OSPREY TECHNOLOGY ACQ CORP	0.45%
UNION ACQUISITION CORP II	0.45%
CRESCENT ACQUISITION CORP	0.45%
JUNIPER INDUSTRIAL HOLDINGS INC	0.45%
EAST STONE ACQUISITION CORP	0.45%
ALUSSA ENERGY ACQUISITION CORP	0.44%
CHINA BIOLOGIC PRODUCTS HDS INC	0.43%
CINCINNATI BELL INC NEW	0.43%
GALILEO ACQUISITION CORP	0.43%
CITIC CAPITAL ACQUISITION CORP	0.43%

Top 5 Shorted Stocks in Long-Short Portfolio 2020

Holding	Weight
APPLE INC	-0.27%
MICROSOFT CORP	-0.21%
ADVANCED ENERGY INDUSTRIES INC	-0.19%
TESLA INC	-0.19%
STMICROELECTRONICS NV	-0.18%

Thank You for Your Interest

Passing the baton to Ololade!

