
JS Corrections of Neural Networks



The Neural Net

The model we work with is RegNetX 32GF by Radosavovic et al.
This is a image classification model, which assigns an image to one
of the 1000 labels.
Suppose we input the following image:

The network will then classify this image and give a 89.76%
certainty that this is an image of a tench (a type of fish).



The Neural Net

The basic architecture of this model is stem (conv layer) + body
(4 stages of sequences of identical blocks) + linear layer.
The identical blocks in RegNetX is given by residual bottleneck
block given by 1x1 conv + 3x3 group conv + 1x1 conv, with 3
parameters for the block architecture.
The RegNet paradigm is to look at the design space and optimize
the network structure. This design space has 16 degrees of
freedom (number of blocks + block width + bottleneck ratio +
group width).
The RegNet architecture provides a family of networks in different
flops and are comparable to state of the art models (in 2020).



Preview of Results

We evaluate our model using the test set MatchedFrequency of
ImageNetV2, which contains 10000 images divided into 1000
classes. Here the results are in net change of correct predictions.

A, q 0 e, 1 e, 2 e, 3 e, 4 m, 1 m, 2 m, 3 m, 4 (m, e), 1 (m, e), 2 (m, e), 3 (m, e), 4

Top1 0 +1 +10 +4 +3 +1 +10 +4 +5 0 +11 +2 -7
Top5 0 +1 +10 0 -1 +2 +13 -3 -2 0 +10 0 -11



Spectral Properties

The model has one linear layer in the end, in the form of

y = W T x + b,

with W a 2520× 1000 matrix. So p = 2520, n = 1000.
We have the spectral decomposition:

1

n
WW T =

∑
(s,h)

s2hhT

where (s, h) are singular value and left singular vector pairs.



Spectral Properties

We consider a thought experiment in which we have an infinite
training set which produces the weights Q satisfying:

QQT =
1

n
E[WW T ].



Spectral Properties

We examine the eigenvalues of the covariance matrix of W . Our
crude estimate of the number of spikes = 23.



Spectrum of Linear Layers of Neural Networks

This behavior is not surprising and is quite common in neural
networks (paper by Martin & Mahoney for reference):



Spectral Properties

We see a qualitative difference between the eigenvectors of the
spikes and the eigenvectors of the MP bulk:

The eigenvectors of the MP bulk looks like pure noise, i.e.
uniformly distributed vectors on the p − 1 dimensional sphere.



Spectral Properties

This scatter plot of eigenvalue vs absolute value of the mean of the
eigenvector entries shows that large eigenvalues are associated with
eigenvectors that are not noise like those in the MP bulk.



Tweaking the Weights

Our goal is to adjust the weights W to improve the performance of
the network.
This adjustment has to be done in a specific way, or else
performance would degrade.

f 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Top1 72.04 72.06 71.72 72.00 71.94 71.68 71.75 71.52 71.70 71.87 71.53
Top5 90.21 90.07 90.24 90.11 90.16 89.93 90.15 89.82 89.63 89.59 89.47



Tweaking the Weights

We first perform SVD on the p × n weight matrix W :

W = UΣV T = Up×qΣq×qV
T
n×q + Z ,

with the singular values in Σ sorted from greatest to smallest and
Z is the residual matrix. So

1

n
WW T =

1

n
UΣ2UT = HHT + N

where

H =
1√
n
Up×qΣq×q.

Here Up×q consists of the top q left singular vectors and Σq×q

consists of the top q singular values.



Tweaking the Weights

Provided that Z is noise, and that EW = BΛVT , then the left
singular vectors of HJS which is the JS correction of H will be a
better estimator of B then Up×q.



Tweaking the Weights

To correct the weights W , we apply JS correction to the space
spanned by the columns of H. Here we are not scaling any
directions (yet). Given priors v1, . . . , vl (linearly independent)
p-vectors, take A to be the matrix with the prior vectors as
columns.
The shrinkage target is given by

M = A(ATA)−1ATH

which is the projection of the columns of H to the space spanned
by the priors.



Tweaking the Weights

The variance of the noise is estimated by

ν2 =
Tr(N)

n+ − q

(
or

Tr(N)

n+ − (1 + n+
p )q

)

where n+ is the number of nonzero singular values. Our shrinkage
parameter is given by

C = I − ν2J−1, J = (H −M)T (H −M).

Our JS correction of H is given by

HJS = HC +M(I − C ).



Tweaking the Weights

We take S2 to be the largest q sample eigenvalues, i.e.

S2 = HTH =
1

n
Σ2
q×q.

We correct the singular values by taking

Φ = S2Ψ2, Ψ2 = I − ν2S−2

where S−2 is the inverse of S2. So the q corrected singular values
are given by

ΣJS ,q×q = (nΦ)1/2.

Many other eigenvalue shrinkages are possible.



Tweaking the Weights

To correct the weights W , we again apply SVD to HJS to get the
left singular vectors βJS .
We replace the top q left singular vectors of U in the SVD of W
by βJS to get a new matrix UJS .
The JS corrected weights WJS is given by

WJS = UJSΣV
T

without singular value corrections. With singular value corrections,
we have

WJS = UJSΣJSV
T .



Some Results

Taking A = (e) which corresponds to taking the grand mean
shrinkage, without singular value corrections, we have

q 0 noise 1 2 3 4 5 6 7 8 9 10 11

Top1 72.04 0.13 72.05 72.14 72.08 72.07 71.98 72.05 71.94 71.65 71.95 71.81 71.77
Top5 90.21 0.53 90.22 90.31 90.21 90.20 90.10 90.16 90.04 89.72 89.92 89.94 89.67

q 12 13 14 15 16 17 18 19 20 21 22 23 24

Top1 71.76 71.67 71.62 71.91 71.90 71.80 71.50 71.82 71.63 71.59 71.84 71.50 71.47
Top5 89.29 89.65 89.42 89.75 89.68 89.41 89.00 89.84 89.08 89.11 89.45 89.11 88.37

With singular value corrections, we have

q 0 1 2 3 4 5 6 7 8

Top1 72.04 72.05 72.11 72.07 72.07 71.98 72.06 71.95 71.66
Top5 90.21 90.22 90.32 90.20 90.23 90.07 90.15 90.03 89.81



Some Results

Taking a closer look to the Top 1 prediction for q = 1, 2, 3, 4:

q 1 2 3 4

worse 0 17 11 12
better 1 27 15 15

net change +1 +10 +4 +3



Some Results

Taking a closer look at q = 2, the following are the images that
were originally correctly classified but now misclassified:



Some Results

The following are the images that were originally misclassified but
now correctly classified:



Choice of A

To find better A, we explore the empirical properties of W .



Choice of A

Take β to be the left singular vectors of H, i.e. β is the matrix
with normalized columns of H.
For z a unit p-vector, we look at the value√

Tr(βT zzTβ)

which is the length of the component of z in the column space of
H.
We know that the length of the component of z in the column
space of B is greater than of H for large p, so the greater the
projection is, the more information it carries about B, the more
justified we use such z inside A.

z , q 1 2 3 4

e 0.04694043225325887 0.0469690466771529 0.053850788947290174 0.05768234304901782
m 0.14742422943229017 0.15261738913083028 0.17775110605585345 0.18052871757787675
µJS(q) 0.20988504238310507 0.224671248953613 0.26171971365607655 0.263107512010601



Results with different A and q

A, q 0 (m, 1) (m, 2) (m, 3) (m, 4) (µJS(1), 1) (µJS(2), 2) (µJS(3), 3) (µJS(4), 4)

Top1 72.04 72.05 72.14 72.08 72.09 72.04 72.13 72.06 71.99
Top5 90.21 90.23 90.34 90.18 90.19 90.21 90.31 90.22 90.10

A, q 0 (m, e), 1 (m, e), 2 (m, e), 3 (m, e), 4 (µJS , e), 1 (µJS , e), 2 (µJS , e), 3 (µJS , e), 4

Top1 72.04 72.04 72.15 72.06 71.97 72.04 72.15 72.06 71.97
Top5 90.21 90.21 90.31 90.21 90.10 90.21 90.31 90.21 90.10



Future Work

1. Find better priors A to have a better shrinkage target

2. Find good weights to work on the weighted version of JS
correction, emphasizing the more important directions

3. There should be correction to the complement left singular
vectors since after the correction the vectors are not
orthogonal anymore

4. Apply JS correction to other neural networks that have similar
behavior



Future Work

5. Perform LW type shrinkage to WW T/n towards sample
correlation matrix and correct the top q singular vectors this
way

6. Investigate the behaviors of the spiked eigenvectors during
training, whether the self-regularization that happens during
training is JS shrinkage, and whether this will give a hint
about better targets



Future Work

7. Some layers of neural networks belong to another class of
behavior, having a heavy tailed spectrum. Are there ways to
correct these layers?


