Research Question

Sample eigenvectors are used throughout the sciences as proxies for unobservable population eigenvectors

How good are these estimates?

The answer is, it depends on a lot of things:

- 1. the aspect ratio, p/n
- 2. the underlying data generation process

Why Simulations?

We look at eigenvectors in simulation because

- 1. we know the ground truth and can measure the error
- 2. we can adjust across different regimes

But we must keep in mind that simulations simplify empirical behavior Our simulation is loosely crafted on empirical results for empirical robustness

Simulation Specifications

For p > 1 we will develop an estimated p-dimensional covariance matrix assuming returns follow a latent one-factor model:

 $X = \beta f + z$

Only X, the simulated returns, are observed

If you make a covariance matrix in this form, your true eigenvalues will not be at 1

In the empirical data we have seen presented lambda seems to depend linearly on p

Parameters Used in the Simulation

 β is randomly drawn from a multivariate normal distribution with mean 1 and standard deviation of 0.25

f (factor returns) are constructed from n random draws from a normal distribution with mean 0 and standard deviation σ = 0.16

z (idiosyncratic asset-specific returns) are constructed from a normal distribution with mean 0 and standard deviation $\delta = 0.2$

S (sample covariance matrix) is equal to XX^T / n

Metrics of the Simulation

We are looking at the leading eigenvalue, λ^2 , and the leading eigenvector

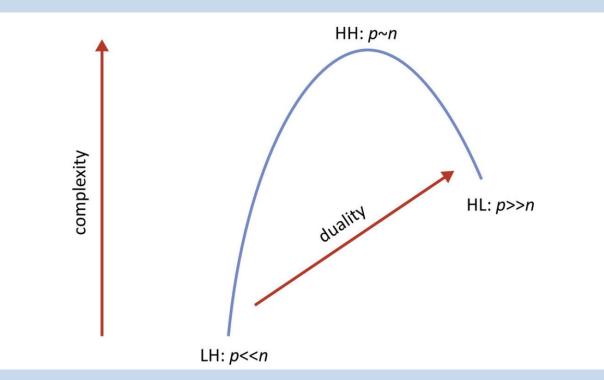
Our measure of how close our estimate, $b = \beta / |\beta|$, is to the truth, h (the leading eigenvector of S), is the absolute dot product of our estimate and h the leading eigenvector

An absolute dot product closer to 1 signals that our estimate is more accurate

Our measure of the leading eigenvalue is at times scaled by p to help visualize the eigenvalues linear relationship to p

Matrix Theory Regimes

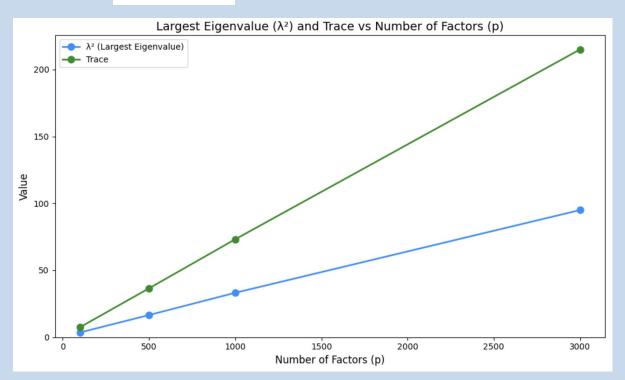
- Classical Statistics: $p = 10, n \rightarrow \infty$
- Classical Random Matrix Theory: $p \to \infty$, $n \to \infty$, and $p/n \to q$
- New Random Matrix Theory: $n = 10, p \rightarrow \infty$



Factor Models

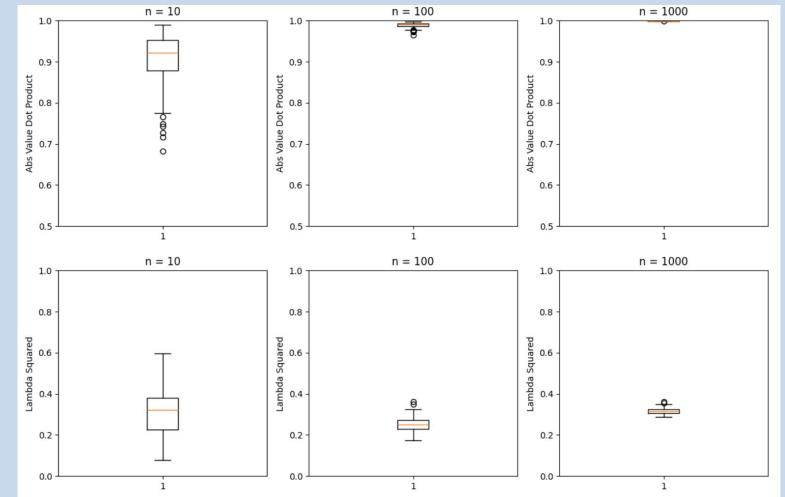
In the data that we care about, empirical data, lambda seems to depend linearly on p

True Covariance Matrix: $\sigma^2 \beta \beta^T + \delta^2 I$



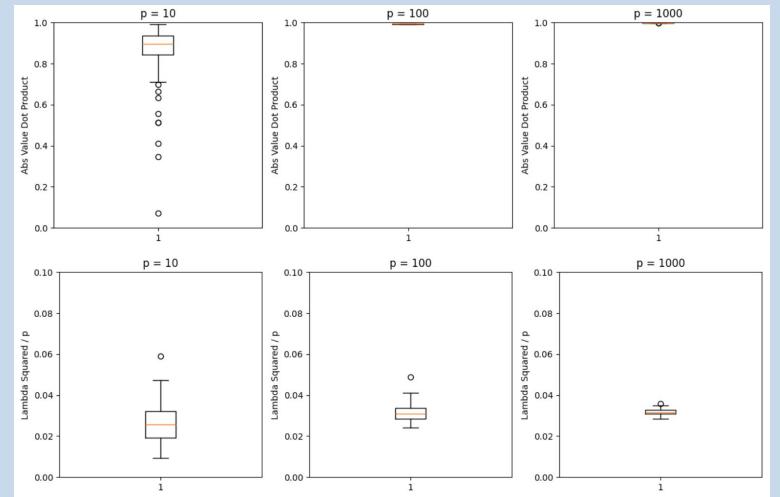
Classical Statistics, $p = 10, n \rightarrow \infty$

Medium Specific Volatility ($\delta = 0.20$)



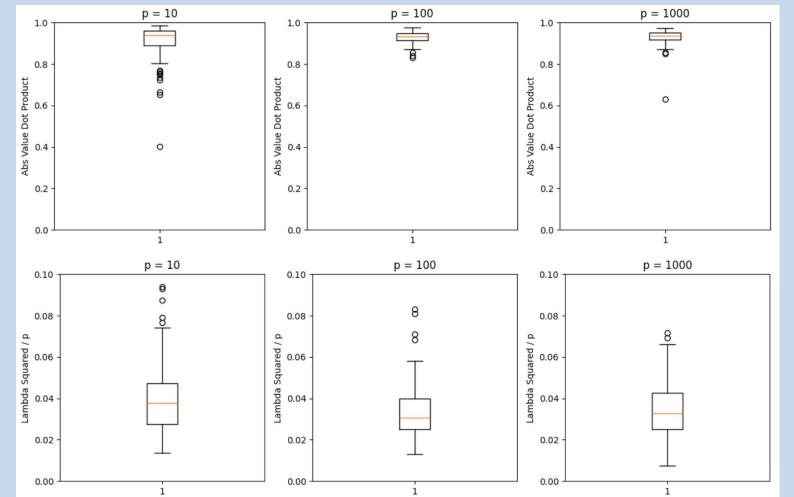
Classical Random Matrix Theory, lambda = $n/p \rightarrow 1$

Medium Specific Volatility ($\delta = 0.20$)



New Random Matrix Theory, $n = 10, p \rightarrow \infty$

Medium Specific Volatility ($\delta = 0.20$)



Consistency Ratios

Simulation	$n \rightarrow$	$p \rightarrow$	$\lambda^{2} \rightarrow$	$CR = \lambda^2 (n / p) \rightarrow$
Classical Statistics	∞	10	λ^2	∞
Classical Random Matrix Theory	р	n	∞	∞
Johnstone Spiked	р	n	λ^2	finite non-zero
New Random Matrix Theory (JSE)	10	∞	∞	finite non-zero