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Overview

» Objective: Introduce the betaMixture method and its applications in
high-dimensional data analysis.
» Topics covered:

» High-dimensional challenges in regression and graphical models.
» Convex geometry and correlation detection.

» The betaMixture method.

» Applications: Riboflavin gene expression analysis.
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Problem Introduction: Linear regression

» Linear function:

P
y=B+> Bixi+e

Jj=1

» where y is the outcome (response) variable is , p is the number of predictors,
x; , sample size is n, and random (Gaussian) noise is € ~ N(0, 02)
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Problems appear when P is greater than n

» Using matrix notation, the parameter vector is estimated by the ordinary
least squares formula 8 = (X'X)71X'Y

» If P > n, routine estimation of regression parameters is not possible since
the inverse of matrix X’X does not exist. 3 is then unidentifiable.

» Even if n > P, inference about 8 may be impractical when P is sufficiently
large because standard errors are often large and the width of the confidence
interval grows with P.

» Standard errors inflate with more predictors:

P(n — 1)FP,n7P,a
n(n— P)

Width of Confidence Interval \/
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The problem with LASSO

» Traditional linear regression methods face challenges when the number of
predictors P exceeds the sample size n, leading to issues like unidentifiable
parameters.

» In high-dimensional settings, typical methods like LASSO make strong
assumptions about sparsity of the mean vector and rows of the covariance
matrix, but correlation between columns of X is inevitable when P is large.

» Approaches to deal with correlations have relied on dimension reduction to
restore validity of the requirement that X’X is invertible.
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Troublesome Assumptions

» Relationship between Y and X may not be linear.
» Ex. a quantitative trait may depend on the expression of many genes so that
a change in the expression of one gene may not occur without simultaneous
change in many other genes.
» (3 sparsity assumption and covariance matrix sparsity may not be valid. It is
possible that a trait is associated with hundreds or even thousands of genes.
> Ex. If genes form a highly connected network, which may be necessary
because the trait requires the production of many different proteins or it may
be evolutionary beneficial as a way to protect against mutations

» Assumption of underlying low dimensionality may not be not valid
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Introduction to Graphical Models

» Graphical Models: Graphical models are probabilistic models that
represent dependencies between random variables as a graph.

» Nodes represent variables X1, X5, ..., Xp.
» Edges between nodes represent conditional dependencies between variables.

» Goal: Detect significant correlations between features in high-dimensional
data.

7/20



Convex Geometry

» High-dimensional spaces behave counter-intuitively.

» Convex geometry is used to show that random pairs of uncorrelated vectors
are almost orthogonal with high probability in high dimensions.

» The angle # between two random vectors is governed by:

) n—11
0 ~ Bet =
o oms(51)

» This can be used to detect correlations by testing deviation from the null.
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BetaMixture Method: Overview

» The betaMixture method models pairwise correlations using a mixture of
beta distributions.

» Empirical Bayes two-group approach:
> Null: fo(z) = 27227 1-—2)7 7

B(%IV_%l) b—1
> Alternative: f,(z) = %

» By treating the data as P points in an n-dimensional space, it leverages
high-dimensional geometry to detect relationships between variables.
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Mixture of Beta Distributions

» Frequentist Approach:
» Null hypothesis: Predictors are uncorrelated.
» Detect edges based on the distribution of angles.

Sin2(chresh0Id) ~ Q5

where Qs is a quantile of the Beta distribution.

» Bayesian Approach (betaMix):
» Empirical Bayes method for improved power.
» Mixture of beta distributions to identify correlated predictors.
» an edge in the graph exists if the posterior null probability (under f) is
smaller than some threshold,

)<7'

m!
where 7 controls the false discovery rate (FDR).
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Mathematical Model of BetaMixture

» Using the properties of the beta distribution for angles between random
vectors, the method identifies non-null correlations, helping to build
graphical models without assuming sparse networks.

» The BetaMixture model:
P(z;) = pofo(z;) + (1 — po)fan()

» Parameters a, b, and py are estimated using the EM algorithm.
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Estimating the BetaMixture Model

» E-step: Estimate posterior probabilities of null and alternative components:

~(t) Pc(Jt_l)fO(Zj)

mO — -
PV o(z) + (1= S ) e e n(2)

» M-step: Maximize likelihood to update a, b, pp.
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Estimating the BetaMixture Model

E-step (Expectation Step):

» In this step, we compute the expected value of the latent variable mg, which
represents whether a pair of predictors follows the null distribution
(uncorrelated).

» The posterior probability that the j-th pair is from the null distribution is:

o _ ' h(z)
0
P (2) + (1= B ) e pen ()

where:

> fb( /) is the null beta distribution, Beta (251, ).

Zj

f.b(2;) is the alternative beta distribution, Beta(a, b).
(t o
Po

is the prior probability of the null hypothesis at iteration t — 1.
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Estimating the BetaMixture Model

M-step (Maximization Step):

» In this step, we maximize the expected complete data log-likelihood from
the E-step by updating the parameters.

» Update the parameters a, b by solving:

argmax Z [ﬁ‘loj(t) log fa,b(Zj)}
J

» This step is repeated iteratively until convergence.

14 /20



Error Rate Control

» False Discovery Rate (FDR): The betaMixture method controls FDR by
setting thresholds for significance testing.

» For m pairwise comparisons, FDR control ensures that the proportion of
false positives among significant results is bounded by a target level g.

» The betaMixture method controls the false discovery rate by setting
thresholds based on beta distributions. m(()t) <T

» Since the null distribution is determined by the sample size, we can set 7 so
that Q,((n—1)/2,0.5) = q.

» High-dimensional spaces allow precise detection of correlations with minimal
false positives.
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Application: Riboflavin dataset

» Dataset:

» Contains normalized expression data of 4088 genes and 71 samples (assumed
to be independent).

» Goal: identifying which genes are predictors of riboflavin production rate in
Bacillus subtilis.

» High-dimensional data where P > n
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Riboflavin Analysis Using BetaMixture

vy

Treat each gene as a point in R™L.
Calculate angles between pairs of gene expression vectors.

Variable selection: detect significant correlations (edges) between the
P = 4088 + 1 variables (genes and riboflavin production)

Reporting the nodes which are found to be adjacent to the response
variable's node.

Threshold: sin? 6 > 0.815 (|r| > 0.43).
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Visualizing the Riboflavin Network
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Fig. 5. A. The riboflavin data - fitted beta mixture model. B. 106 genes are selected as strong predictors for the production rate of riboflavin data

» Fig. 5A shows the distribution of the z; 's and the fitted mixture model.
» For variable selection, we're only interested in edges which connect to the
riboflavin production rate variable (the highlighted node, q_RIBFLV in Fig.

5B)
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Riboflavin Results

vy

106 genes were identified as significant predictors of riboflavin production.
Formed two large interconnected clusters.

The large number of selected predictors and the strong dependence among
them suggests that riboflavin production is an intricate process which
cannot be explained well by a sparse, linear model.

A change in one gene may cause a chain reaction in many other genes,
possibly involving non-linear effects, making it complicated to predict the
ultimate effect on the response variable.
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Conclusion

» Summary:
» BetaMixture method provides a powerful alternative to traditional sparse
models.
» Based on solid convex geometry principles for high-dimensional data.
» Effective in complex, non-sparse networks like gene expression.
» Other Applications:
» Spatial data (e.g., estimating spatial covariance matrices).
» Classification problems (e.g., radar signal classification).
» Complex high-dimensional datasets in various domains.
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