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Overview

▶ Objective: Introduce the betaMixture method and its applications in
high-dimensional data analysis.

▶ Topics covered:
▶ High-dimensional challenges in regression and graphical models.
▶ Convex geometry and correlation detection.
▶ The betaMixture method.
▶ Applications: Riboflavin gene expression analysis.
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Problem Introduction: Linear regression

▶ Linear function:

y = β0 +

p∑
j=1

βjxj + ϵ

▶ where y is the outcome (response) variable is , p is the number of predictors,
xj , sample size is n, and random (Gaussian) noise is ϵ ∼ N(0, σ2)
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Problems appear when P is greater than n

▶ Using matrix notation, the parameter vector is estimated by the ordinary
least squares formula β̂ = (X ′X )−1X ′Y

▶ If P > n, routine estimation of regression parameters is not possible since
the inverse of matrix X ′X does not exist. β is then unidentifiable.

▶ Even if n > P , inference about β may be impractical when P is sufficiently
large because standard errors are often large and the width of the confidence
interval grows with P .

▶ Standard errors inflate with more predictors:

Width of Confidence Interval ∝

√
P(n − 1)FP,n−P,α

n(n − P)
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The problem with LASSO

▶ Traditional linear regression methods face challenges when the number of
predictors P exceeds the sample size n, leading to issues like unidentifiable
parameters.

▶ In high-dimensional settings, typical methods like LASSO make strong
assumptions about sparsity of the mean vector and rows of the covariance
matrix, but correlation between columns of X is inevitable when P is large.

▶ Approaches to deal with correlations have relied on dimension reduction to
restore validity of the requirement that X ′X is invertible.
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Troublesome Assumptions

▶ Relationship between Y and X may not be linear.
▶ Ex. a quantitative trait may depend on the expression of many genes so that

a change in the expression of one gene may not occur without simultaneous
change in many other genes.

▶ β sparsity assumption and covariance matrix sparsity may not be valid. It is
possible that a trait is associated with hundreds or even thousands of genes.
▶ Ex. If genes form a highly connected network, which may be necessary

because the trait requires the production of many different proteins or it may
be evolutionary beneficial as a way to protect against mutations

▶ Assumption of underlying low dimensionality may not be not valid
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Introduction to Graphical Models

▶ Graphical Models: Graphical models are probabilistic models that
represent dependencies between random variables as a graph.

▶ Nodes represent variables X1,X2, ...,XP .

▶ Edges between nodes represent conditional dependencies between variables.

▶ Goal: Detect significant correlations between features in high-dimensional
data.
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Convex Geometry

▶ High-dimensional spaces behave counter-intuitively.

▶ Convex geometry is used to show that random pairs of uncorrelated vectors
are almost orthogonal with high probability in high dimensions.

▶ The angle θ between two random vectors is governed by:

sin2 θ ∼ Beta

(
n − 1

2
,
1

2

)
▶ This can be used to detect correlations by testing deviation from the null.
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BetaMixture Method: Overview

▶ The betaMixture method models pairwise correlations using a mixture of
beta distributions.

▶ Empirical Bayes two-group approach:

▶ Null: f0(z) =
z(n−1)/2−1(1−z)−1/2

B( n−1
2

, 1
2)

▶ Alternative: fa,b(z) =
za−1(1−z)b−1

B(a,b)

▶ By treating the data as P points in an n-dimensional space, it leverages
high-dimensional geometry to detect relationships between variables.
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Mixture of Beta Distributions

▶ Frequentist Approach:
▶ Null hypothesis: Predictors are uncorrelated.
▶ Detect edges based on the distribution of angles.

sin2(θthreshold) ∼ Qδ

where Qδ is a quantile of the Beta distribution.

▶ Bayesian Approach (betaMix):
▶ Empirical Bayes method for improved power.

▶ Mixture of beta distributions to identify correlated predictors.
▶ an edge in the graph exists if the posterior null probability (under f0) is

smaller than some threshold,

m
(t)
0 < τ

where τ controls the false discovery rate (FDR).
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Mathematical Model of BetaMixture

▶ Using the properties of the beta distribution for angles between random
vectors, the method identifies non-null correlations, helping to build
graphical models without assuming sparse networks.

▶ The BetaMixture model:

p(zj) = p0f0(zj) + (1− p0)fa,b(zj)

▶ Parameters a, b, and p0 are estimated using the EM algorithm.
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Estimating the BetaMixture Model

▶ E-step: Estimate posterior probabilities of null and alternative components:

m̂
(t)
0 =

p
(t−1)
0 f0(zj)

p
(t−1)
0 f0(zj) + (1− p

(t−1)
0 )fa(t−1),b(t−1)(zj)

▶ M-step: Maximize likelihood to update a, b, p0.
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Estimating the BetaMixture Model

E-step (Expectation Step):

▶ In this step, we compute the expected value of the latent variable m0, which
represents whether a pair of predictors follows the null distribution
(uncorrelated).

▶ The posterior probability that the j-th pair is from the null distribution is:

m̂
(t)
0 =

p
(t−1)
0 f0(zj)

p
(t−1)
0 f0(zj) + (1− p

(t−1)
0 )fa(t−1),b(t−1)(zj)

where:
▶ f0(zj) is the null beta distribution, Beta

(
n−1
2 , 12

)
.

▶ fa,b(zj) is the alternative beta distribution, Beta(a, b).

▶ p
(t−1)
0 is the prior probability of the null hypothesis at iteration t − 1.
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Estimating the BetaMixture Model

M-step (Maximization Step):

▶ In this step, we maximize the expected complete data log-likelihood from
the E-step by updating the parameters.

▶ Update the parameters a, b by solving:

argmax
∑
j

[
m̂0j

(t) log fa,b(zj)
]

▶ This step is repeated iteratively until convergence.
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Error Rate Control

▶ False Discovery Rate (FDR): The betaMixture method controls FDR by
setting thresholds for significance testing.

▶ For m pairwise comparisons, FDR control ensures that the proportion of
false positives among significant results is bounded by a target level q.

▶ The betaMixture method controls the false discovery rate by setting
thresholds based on beta distributions. m

(t)
0 < τ

▶ Since the null distribution is determined by the sample size, we can set τ so
that Qτ ((n − 1)/2, 0.5) = q.

▶ High-dimensional spaces allow precise detection of correlations with minimal
false positives.
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Application: Riboflavin dataset

▶ Dataset:
▶ Contains normalized expression data of 4088 genes and 71 samples (assumed

to be independent).
▶ Goal: identifying which genes are predictors of riboflavin production rate in

Bacillus subtilis.

▶ High-dimensional data where P > n
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Riboflavin Analysis Using BetaMixture

▶ Treat each gene as a point in R71.

▶ Calculate angles between pairs of gene expression vectors.

▶ Variable selection: detect significant correlations (edges) between the
P = 4088 + 1 variables (genes and riboflavin production)

▶ Reporting the nodes which are found to be adjacent to the response
variable’s node.

▶ Threshold: sin2 θ > 0.815 (|r | > 0.43).
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Visualizing the Riboflavin Network

▶ Fig. 5A shows the distribution of the zj ’s and the fitted mixture model.
▶ For variable selection, we’re only interested in edges which connect to the

riboflavin production rate variable (the highlighted node, q RIBFLV in Fig.
5B)
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Riboflavin Results

▶ 106 genes were identified as significant predictors of riboflavin production.

▶ Formed two large interconnected clusters.

▶ The large number of selected predictors and the strong dependence among
them suggests that riboflavin production is an intricate process which
cannot be explained well by a sparse, linear model.

▶ A change in one gene may cause a chain reaction in many other genes,
possibly involving non-linear effects, making it complicated to predict the
ultimate effect on the response variable.
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Conclusion

▶ Summary:
▶ BetaMixture method provides a powerful alternative to traditional sparse

models.
▶ Based on solid convex geometry principles for high-dimensional data.
▶ Effective in complex, non-sparse networks like gene expression.

▶ Other Applications:
▶ Spatial data (e.g., estimating spatial covariance matrices).
▶ Classification problems (e.g., radar signal classification).
▶ Complex high-dimensional datasets in various domains.
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